There is increasing evidence that many risk loci found using genome-wide association studies are molecular quantitative trait loci (QTLs). Here we introduce a new set of functional annotations based on causal posterior probabilities of fine-mapped molecular cis-QTLs, using data from the Genotype-Tissue Expression (GTEx) and BLUEPRINT consortia. We show that these annotations are more strongly enriched for heritability (5.84× for eQTLs; P = 1.19 × 10) across 41 diseases and complex traits than annotations containing all significant molecular QTLs (1.80× for expression (e)QTLs). eQTL annotations obtained by meta-analyzing all GTEx tissues generally performed best, whereas tissue-specific eQTL annotations produced stronger enrichments for blood- and brain-related diseases and traits. eQTL annotations restricted to loss-of-function intolerant genes were even more enriched for heritability (17.06×; P = 1.20 × 10). All molecular QTLs except splicing QTLs remained significantly enriched in joint analysis, indicating that each of these annotations is uniquely informative for disease and complex trait architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030458PMC
http://dx.doi.org/10.1038/s41588-018-0148-2DOI Listing

Publication Analysis

Top Keywords

eqtl annotations
12
molecular quantitative
8
quantitative trait
8
trait loci
8
diseases complex
8
complex traits
8
enriched heritability
8
molecular qtls
8
annotations
7
leveraging molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!