Na-Ca exchanger (NCX) isoforms constitute the major cellular Ca extruding system in neurons and microglia. We herein investigated the role of NCX isoforms in the pathophysiology of Parkinson's disease (PD). Their expression and activity were evaluated in neurons and glia of mice expressing the human A53T variant of α-synuclein (A53T mice), an animal model mimicking a familial form of PD. Western blotting revealed that NCX3 expression in the midbrain of 12-month old A53T mice was lower than that of wild type (WT). Conversely, NCX1 expression increased in the striatum. Immunohistochemical studies showed that glial fibrillary acidic protein (GFAP)-positive astroglial cells significantly increased in the substantia nigra pars compacta (SNc) and in the striatum. However, the number and the density of tyrosine hydroxylase (TH)-positive neurons decreased in both brain regions. Interestingly, ionized calcium binding adaptor molecule 1 (IBA-1)-positive microglial cells increased only in the striatum of A53T mice compared to WT. Double immunostaining studies showed that in A53T mice, NCX1 was exclusively co-expressed in IBA-1-positive microglial cells in the striatum, whereas NCX3 was solely co-expressed in TH-positive neurons in SNc. Beam walking and pole tests revealed a reduction in motor performance for A53T mice compared to WT. In vitro experiments in midbrain neurons from A53T and WT mice demonstrated a reduction in NCX3 expression, which was accompanied by mitochondrial overload of Ca ions, monitored with confocal microscopy by X-Rhod-1 fluorescent dye. Collectively, in vivo and in vitro findings suggest that the reduction in NCX3 expression and activity in A53T neurons from midbrain may cause mitochondrial dysfunction and neuronal death in this brain area, whereas NCX1 overexpression in microglial cells may promote their proliferation in the striatum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018508PMC
http://dx.doi.org/10.1038/s41419-018-0775-7DOI Listing

Publication Analysis

Top Keywords

a53t mice
24
ncx3 expression
12
microglial cells
12
a53t
9
parkinson's disease
8
ncx isoforms
8
expression activity
8
increased striatum
8
cells increased
8
th-positive neurons
8

Similar Publications

Background: Dementia with Lewy Bodies (DLB) is one of the most common Alzheimer's Disease (AD)-related dementias and it is defined by the presence of abnormal cytoplasmic inclusions composed of aggregated α-synuclein (αsyn) in neuronal soma, known as Lewy bodies (LB). LB often coexists with AD type pathology such as amyloid-β (Aβ) plaques and neurofibrillary tangles containing hyperphosphorylated tau in several LB dementias, including Parkinson's Disease Dementia and Lewy Body variant AD. These co-pathologies likely represent a spectrum of various contributions of shared mechanisms that underlie these diseases.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related neurodegenerative pathology of the central nervous system. The well-known abnormalities characteristic of PD are dysfunctions in the nigrostriatal system including the substantia nigra of the midbrain and the striatum. Moreover, in PD persons, alpha-synucleinopathy is associated with abnormalities in the dopaminergic brain system.

View Article and Find Full Text PDF

Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function.

View Article and Find Full Text PDF

Transmission of Peripheral-blood α-Synuclein Fibrils Exacerbates Synucleinopathy and Neurodegeneration in Parkinson's Disease by Endothelial Lag3 Endocytosis.

Am J Physiol Cell Physiol

December 2024

Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Parkinson's disease (PD) is an age-related neurodegenerative disorder. The pathological feature of PD is abnormal alpha-synuclein (α-syn) formation and transmission. Recent evidence demonstrates that α-syn preformed fibrils (α-syn PFF) can be detected in the serum of PD patients.

View Article and Find Full Text PDF

Wolfberry (Lycium barbarum) glycopeptide attenuates dopaminergic neurons loss by inhibiting lipid peroxidation in Parkinson's disease.

Phytomedicine

November 2024

Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:

Background: Parkinson's disease (PD) is a common neurodegenerative disorder characterized clinically by motor dysfunction due to gradual loss of dopaminergic neurons in the nigrostriatal system. Currently, medications such as levodopa preparations, offer only temporary symptomatic relief without preventing neuronal loss or halting disease progression. In traditional Chinese medicine (TCM), a particular type of wolfberry or goji berry, the fruit of Lycium barbarum L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!