Topological insulators have unconventional gapless edge states where disorder-induced back-scattering is suppressed. In photonics, such edge states lead to unidirectional waveguides which are useful for integrated photonic circuitry. Cavity modes, another type of fundamental component in photonic chips, however, are not protected by band topology because of their lower dimensions. Here we demonstrate that concurrent wavevector space and real-space topology, dubbed as dual-topology, can lead to light-trapping in lower dimensions. The resultant photonic-bound state emerges as a Jackiw-Rebbi soliton mode localized on a dislocation in a two-dimensional photonic crystal, as proposed theoretically and discovered experimentally. Such a strongly confined cavity mode is found to be robust against perturbations. Our study unveils a mechanism for topological light-trapping in lower dimensions, which is invaluable for fundamental physics and various applications in photonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018105 | PMC |
http://dx.doi.org/10.1038/s41467-018-04861-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!