The conventional Josephson effect may be modified by introducing spin-active scattering in the interface layer of the junction. Here, we discuss a Josephson junction consisting of two s-wave superconducting leads coupled over a classical spin that precesses with the Larmor frequency due to an external magnetic field. This magnetically active interface results in a time-dependent boundary condition with different tunnelling amplitudes for spin-up and -down quasi-particles and where the precession produces spin-flip scattering processes. As a result, the Andreev states develop sidebands and a non-equilibrium population that depend on the details of the spin precession. The Andreev states carry a steady-state Josephson charge current and a time-dependent spin current, whose current-phase relations could be used to characterize the precessing spin. The spin current is supported by spin-triplet correlations induced by the spin precession and creates a feedback effect on the classical spin in the form of a torque that shifts the precession frequency. By applying a bias voltage, the Josephson frequency adds another complexity to the situation and may create resonances together with the Larmor frequency. These Shapiro resonances manifest as torques and, under suitable conditions, are able to reverse the direction of the classical spin in sub-nanosecond time. Another characteristic feature is the subharmonic gap structure in the DC charge current displaying an even-odd effect attributable to precession-assisted multiple Andreev reflections.This article is part of the theme issue 'Andreev bound states'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030142 | PMC |
http://dx.doi.org/10.1098/rsta.2015.0229 | DOI Listing |
Nature
January 2025
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
A particle current generated by pumping in the absence of gradients in potential energy, density or temperature is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect and the quantum anomalous Hall effect. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.
The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France.
We present a method to systematically identify and classify quantum optical nonclassical states as classical or nonclassical based on the resources they create on a bosonic quantum computer. This is achieved by converting arbitrary bosonic states into multiple modes, each occupied by a single photon, thereby defining qubits of a bosonic quantum computer. Starting from a bosonic classical-like state in a representation that explicitly respects particle number superselection rules, we apply universal gates to create arbitrary superpositions of states with the same total particle number.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.
High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Increasing the degree of freedom for quantum entanglement within tensor networks can enhance the depiction of the essence in many-body systems. However, this enhancement comes with a significant increase in computational complexity and critical slowing down, which drastically increases time consumption. This work converts a quantum tensor network algorithm into a classical circuit on the Field Programmable Gate Arrays (FPGAs) and arranges the computing unit with a dense parallel design, efficiently optimizing the time consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!