A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetics teach that electronic coupling lowers the free-energy change that accompanies electron transfer. | LitMetric

Electron-transfer theories predict that an increase in the quantum-mechanical mixing (H) of electron donor and acceptor wavefunctions at the instant of electron transfer drives equilibrium constants toward unity. Kinetic and equilibrium studies of four acceptor-bridge-donor (A-B-D) compounds reported herein provide experimental validation of this prediction. The compounds have two redox-active groups that differ only by the orientation of the aromatic bridge: a phenyl-thiophene bridge (p) that supports strong electronic coupling of H > 1,000 cm; and a xylyl-thiophene bridge (x) that prevents planarization and decreases H < 100 cm without a significant change in distance. Pulsed-light excitation allowed kinetic determination of the equilibrium constant, K In agreement with theory, K(p) were closer to unity compared to K(x). A van't Hoff analysis provided clear evidence of an adiabatic electron-transfer pathway for p-series and a nonadiabatic pathway for x-series. Collectively, the data show that the absolute magnitude of the thermodynamic driving force for electron transfers are decreased when adiabatic pathways are operative, a finding that should be taken into account in the design of hybrid materials for solar energy conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048547PMC
http://dx.doi.org/10.1073/pnas.1722401115DOI Listing

Publication Analysis

Top Keywords

electronic coupling
8
electron transfer
8
kinetics teach
4
teach electronic
4
coupling lowers
4
lowers free-energy
4
free-energy change
4
change accompanies
4
electron
4
accompanies electron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!