Development of an infant complete-airway in vitro model for evaluating aerosol deposition.

Med Eng Phys

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States. Electronic address:

Published: June 2018

A complete-airway in vitro model would be very useful for toxicological dosimetry testing and for developing targeted inhaled medications in cases where conducting in vivo experiments are exceedingly difficult, as with infants. The objective of this study was to determine whether packed bed in vitro models, which contain spheres as the primary repeating unit, provide a realistic representation of aerosol deposition in the tracheobronchial region of infant lungs based on computational fluid dynamics (CFD) predictions. The packed bed (PB) CFD model contained an inlet consistent with airway bifurcation B3 (∼lobar bronchi) leading to a spherical array with voids between the spheres forming a divided flow pathway. The hydrodynamic diameter of the voids was approximately matched to the diameter of bifurcations in various lung regions. For comparison, a CFD stochastic individual pathway (SIP) geometry with realistic bifurcations extending from B4-B15 (terminal bronchioles) was selected as an anatomically accurate model. The CFD-SIP model predictions were benchmarked with existing algebraic correlations for aerosol deposition in the lungs and found to be reasonable. Unfortunately, the CFD-PB model did not provide a good representation of aerosol deposition in the tracheobronchial region of human lungs. Through careful selection of the PB sphere size and inlet conditions, total deposition in the CFD-PB model matched CFD-SIP deposition within 10% absolute error across a range of relevant aerosol sizes. However, regional deposition within the CFD-PB model was very different from the CFD-SIP case. Therefore, the PB approach cannot be recommended for determining spatial or temporal distribution of aerosol transport and impaction deposition through the lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309601PMC
http://dx.doi.org/10.1016/j.medengphy.2018.05.002DOI Listing

Publication Analysis

Top Keywords

aerosol deposition
16
cfd-pb model
12
complete-airway vitro
8
model
8
vitro model
8
deposition
8
packed bed
8
representation aerosol
8
deposition tracheobronchial
8
tracheobronchial region
8

Similar Publications

There is increased interest in developing non-animal test systems for inhalation exposure safety assessments. However, defined methodologies are absent for predicting local respiratory effects from inhalation exposure to irritants. The current study introduces a concept for applying in vitro and in silico methods for inhalation exposure safety assessment.

View Article and Find Full Text PDF

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.

View Article and Find Full Text PDF

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

Virus-laden aerosols play a substantial role in the spread of numerous infectious diseases, particularly in enclosed indoor settings. Ultraviolet-C (UVC) disinfection is known to be a highly efficient method for disinfecting pathogenic airborne viruses. Recent recommendations suggest using far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps to disinfect high-risk public spaces due to lower exposure risks than low-pressure (LP) mercury lamps (254 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!