Background: Cell therapy for the treatment of intervertebral disc degeneration (IDD) faces serious barriers since tissue-specific adult cells such as nucleus pulposus cells (NPCs) have limited proliferative ability and poor regenerative potential; in addition, it is difficult for exogenous adult stem cells to survive the harsh environment of the degenerated intervertebral disc. Endogenous repair by nucleus pulposus mesenchymal stem cells (NPMSCs) has recently shown promising regenerative potential for the treatment of IDD. Notochordal cells (NCs) and NC-conditioned medium (NCCM) have been proven to possess regenerative ability for the treatment of IDD, but this approach is limited by the isolation and passaging of NCs. Our previous study demonstrated that modified notochordal cell-rich nucleus pulposus (NC-rich NP) has potential for the repair of IDD. However, whether this can protect NPMSCs during IDD has not been evaluated.

Methods: In the current study, tumor necrosis factor (TNF)-α was used to mimic the inflammatory environment of IDD. Human NPMSCs were cocultured with NC-rich NP explants from healthy rabbit lumbar spine with or without TNF-α. Cell proliferation and senescence were analyzed to investigate the effect of NC-rich NP explants on TNF-α-treated NPMSCs. The expression of mRNA encoding proteins related to matrix macromolecules (such as aggrecan, Sox-9, collagen Iα, and collagen IIα), markers related to the nucleus pulposus cell phenotype (including CA12, FOXF1, PAX1, and HIF-1α), and senescence markers (such as p16, p21, and p53), senescence-associated proinflammatory cytokines (IL-6), and extracellular proteases (MMP-13, ADAMTS-5) was assessed. The protein expression of CA12 and collagen II was also evaluated.

Results: After a 7-day treatment, the NC-rich NP explant was found to enhance cell proliferation, decrease cellular senescence, promote glycosaminoglycan (GAG), collagen II, and CA12 production, upregulate the expression of extracellular matrix (ECM)-related genes (collagen I, collagen II, SOX9, and ACAN), and enhance the expression of nucleus pulposus cell (NPC) markers (HIF-1α, FOXF1, PAX1, and CA12).

Conclusion: Modified NC-rich NP explants can attenuate TNF-α-induced degeneration and senescence of NPMSCs in vitro. Our findings provide new insights into the therapeutic potential of NC-rich NP for the treatment of IDD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019307PMC
http://dx.doi.org/10.1186/s13287-018-0919-9DOI Listing

Publication Analysis

Top Keywords

nucleus pulposus
28
stem cells
12
treatment idd
12
nc-rich explants
12
pulposus mesenchymal
8
mesenchymal stem
8
notochordal cell-rich
8
cell-rich nucleus
8
tumor necrosis
8
intervertebral disc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!