Glycoprotein recognition has recently gained a lot of attention, since glycoproteins play important roles in a diverse range of biological processes. Robustly synthesized glycoprotein receptors, such as molecularly imprinted polymers (MIPs), which can be easily and sustainably handled, are highly attractive as antibody substitutes because of the difficulty in obtaining high-affinity antibodies specific for carbohydrate-containing antigens. Herein, molecularly imprinted nanocavities for glycoproteins have been fabricated via a bottom-up molecular imprinting approach using surface-initiated atom transfer radical polymerization (SI-ATRP). As a model glycoprotein, ovalbumin was immobilized in a specific orientation onto a surface plasmon resonance sensor chip by forming a conventional cyclic diester between boronic acid and cis-diol. Biocompatible polymer matrices were formed around the template molecule, ovalbumin, using SI-ATRP via a hydrophilic comonomer, 2-methacryloyloxyethyl phosphorylcholine, in the presence of pyrrolidyl acrylate (PyA), a functional monomer capable of electrostatically interacting with ovalbumin. The removal of ovalbumin left MIPs with binding cavities containing boronic acid and PyA residues located at suitable positions for specifically binding ovalbumin. Careful analysis revealed that strict control over the polymer significantly improved sensitivity and selectivity for ovalbumin recognition, with a limit of detection of 6.41 ng/mL. Successful detection of ovalbumin in an egg white matrix was demonstrated to confirm the practical utility of this approach. Thus, this strategy of using a polymer-based recognition of a glycoprotein through molecularly imprinted nanocavities precisely prepared using a bottom-up approach provides a potentially powerful approach for detection of other glycoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b01215DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
16
imprinted nanocavities
12
glycoprotein recognition
8
recognition glycoprotein
8
boronic acid
8
ovalbumin
7
glycoprotein
5
orientationally fabricated
4
fabricated zwitterionic
4
molecularly
4

Similar Publications

Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein.

View Article and Find Full Text PDF

β-cyclodextrin imprinted film embedded with methylene blue: A host-guest sensitive electrochemical strategy for PFAS detection.

J Hazard Mater

December 2024

State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) have raised significant concerns; however, their accurate detection in aqueous environments remains a major challenge. In this study, a host-guest molecularly imprinted polymer-based electrochemical sensor with enhanced antifouling properties were developed using β-cyclodextrin embedded with methylene blue (βCD-MB MIP). This sensor demonstrated sensitive and selective quantification of perfluorooctanoic acid (PFOA) in real water samples.

View Article and Find Full Text PDF

A new RRS method for measurement of temperature with magnetic-liquid crystal nanosurface molecularly imprinted polymer probe.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China. Electronic address:

A new magnetic-liquid crystal nanosurface molecularly imprinted polymer (5CB-FeO@MIP) resonance Rayleigh scattering temperature sensor was prepared, using liquid crystal 4'-cyano-4'-pentylbiphenyl as the temperature sensing element, nano-FeO as the substrate, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking agent. It was characterized by molecular spectroscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. The thermosensitive effect of 11 liquid crystals, that is, the relationship between RRS and temperature, was studied.

View Article and Find Full Text PDF

Background: Ciprofloxacin is a widely used antibiotic in medicine and agriculture. It can cause pollution to the environment and food, thereby affecting human health.

Objective: This study proposes the preparation of molecular imprinted fluorescent sensors and their selective detection of ciprofloxacin, with the aim of achieving specific recognition and accurate detection of ciprofloxacin.

View Article and Find Full Text PDF

This study developed potentiometric sensors for detecting lurasidone HCl (LSH), a vital drug for treating schizophrenia and bipolar I disorder, in pharmaceutical formulations and biological samples. The sensors are based on screen-printed electrodes (SPE) modified with a molecularly imprinted polymer (MIP) synthesized using lurasidone as a template, 1-vinyl-2-pyrrolidine (VP) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and benzoyl peroxide as an initiator. The SPE was further modified with a conductive polyaniline (PANI) film and a polyvinyl chloride (PVC) layer containing MIP as an ionophore and multiwalled carbon nanotubes (MWCNT) as a transducing material along with 2-nitrophenyl octyl ether (2-NPOE) as plasticizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!