Global trends in nitrate leaching research in the 1960-2017 period.

Sci Total Environ

Department of Engineering, University of Almeria, Almeria, Spain; CIAIMBITAL Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology, ceiA3 Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain. Electronic address:

Published: December 2018

Nitrate leaching is the process whereby the nitrate (NO) anion moves downwards in the soil profile with soil water. Nitrate leaching is commonly associated with chemical nitrogen (N) fertilizers used in agriculture. Nitrate leaching from different sources and contamination of surface and groundwater is a global phenomenon that has prompted social and political pressure to reduce nitrate leaching and contamination of water bodies. This bibliometric study analyzed global trends in nitrate leaching research. The results showed a rising interest in the last decades in this topic; given the growth tendency over the last years, it was envisaged that the importance on nitrate leaching research will continue increasing in the future. Knowledge on nitrate leaching was mostly disseminated through scientific publications (90% of total documents recovered), both as journal articles and reviews, classified in the Scopus database in the Agricultural, Biological and Environmental Sciences areas. Most publications dealt with soil nitrogen losses from agroecosystems and farmlands and the associated impact on the environment; they were published in journals with a focus on the influence of anthropogenic and soil-crop-animal systems in the environment, and on how such changes in the environment impact agroecosystems. Most documents published on nitrate leaching were indisputably from the United States, followed by China, the United Kingdom and Germany. An analysis of the main keywords showed an overall dominance of the soil nitrogen cycle, fertilizer use in agriculture and water quality aspects. The evolution of main crop species involved in nitrate leaching research showed a rising relevance of research conducted with maize, wheat and grasses from 1990 onwards. The most productive institutions in terms of number of documents dealing with nitrate leaching research, h-index and total citations, were located in the United States, China and the Netherlands. The United States Department of Agriculture stood out, followed by the Chinese Academy of Sciences and Wageningen University and Research. There were clusters of institutions with intercontinental interaction, on nitrate leaching research, between institutions from Europe, Asia and South and North America. Overall, this study has highlighted, from a bibliometric perspective, the rising concern on nitrate leaching. Progress in this field has been made particularly on the impact of the soil-plant-animal system on the environment and agroecosystems, and on fundamental and applied aspects of plant-soil interactions with an emphasis in cropping systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.06.215DOI Listing

Publication Analysis

Top Keywords

nitrate leaching
52
nitrate
14
leaching
13
united states
12
global trends
8
trends nitrate
8
leaching rising
8
soil nitrogen
8
states china
8
leaching 1960-2017
4

Similar Publications

A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation.

Environ Sci Process Impacts

January 2025

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.

View Article and Find Full Text PDF

Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid.

View Article and Find Full Text PDF

Dynamic transformation and leaching processes of nitrogen in a karst agricultural soil under simulated rainfall conditions.

J Contam Hydrol

December 2024

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.

Frequent exchange of surface water and groundwater in karst agricultural areas results in soil nutrient loss during rainfall and consequent deterioration of the aquatic environment. To understand nitrogen (N) transformation and leaching processes from karst soil during rainfall events, two typical N fertilizers were added to karst soil and consequently investigated the nitrogenous species using soil column experiments system. The contents of various N forms in the soil and leachate were analyzed, and the net nitrification and the N leaching rates were calculated.

View Article and Find Full Text PDF

This study describes the use of the emulsion liquid membrane (ELM) technique to recover thorium (Th(IV)) from an aqueous nitrate solution. The components of the ELM were kerosene as a diluent, sorbitan monooleate (span 80) as a surfactant, bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) as an extractant, and HSO solution as a stripping reagent. Th(IV) was more successfully extracted and separated under the following favorable conditions: Cyanex272 concentration of 0.

View Article and Find Full Text PDF

Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!