A transcriptome of the Gecarcinus lateralis molting gland (Y-organ or YO) contained 48,590 contiguous sequences (contigs) from intermolt (IM), early premolt (EP), mid premolt (MP), late premolt (LP), and postmolt (PM) stages. The YO is kept in the basal state in IM by molt-inhibiting hormone (MIH)/cyclic nucleotide-dependent signaling. YO activation in EP requires down-regulation of MIH signaling and activation of mechanistic target of rapamycin (mTOR)-dependent protein synthesis. Transition of the YO to the committed state in MP requires activin/transforming growth factor-beta (TGFβ) signaling. YO repression occurs at the end of LP. A total of 28,179 contigs (58%) showed molt stage-specific changes in gene expression. The largest number of differentially-expressed genes (DEGs) were at the IM/EP (16,142 contigs), LP/PM (18,161 contigs), and PM/IM (8290 contigs) transitions. By contrast, the numbers of DEGs were 372 and 1502 contigs for the EP/MP and MP/LP transitions, respectively. DEG analysis of 23 signal transduction pathways showed significant changes in MIH, mTOR, activin/TGFβ, Notch, MAP kinase, and Wnt signaling. Down-regulation of MIH signaling genes in premolt is consistent with reduced MIH sensitivity in MP and LP. Up-regulation of mTOR signaling genes in IM and premolt stages is consistent with its role in YO activation and sustained ecdysteroidogenesis. Up-regulation of activin/TGFβ signaling genes in EP and MP is consistent with the role of a myostatin/activin-like factor in YO commitment. Notch, MAP kinase, and Wnt DEG analysis may indicate possible crosstalk with the MIH, mTOR, and activin/TGFβ pathways to integrate other inputs to control YO ecdysteroidogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2018.06.001DOI Listing

Publication Analysis

Top Keywords

signaling genes
12
molting gland
8
gland y-organ
8
gecarcinus lateralis
8
signaling activation
8
down-regulation mih
8
mih signaling
8
deg analysis
8
mih mtor
8
mtor activin/tgfβ
8

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!