Human alkyladenine DNA glycosylase (AAG) recognizes many alkylated and deaminated purine lesions and excises them to initiate the base excision DNA repair pathway. AAG employs facilitated diffusion to rapidly scan nonspecific sites and locate rare sites of damage. Nonspecific DNA binding interactions are critical to the efficiency of this search for damage, but little is known about the binding footprint or the affinity of AAG for nonspecific sites. We used biochemical and biophysical approaches to characterize the binding of AAG to both undamaged and damaged DNA. Although fluorescence anisotropy is routinely used to study DNA binding, we found unexpected complexities in the data for binding of AAG to DNA. Systematic comparison of different fluorescent labels and different lengths of DNA allowed binding models to be distinguished and demonstrated that AAG can bind with high affinity and high density to nonspecific DNA. Fluorescein-labeled DNA gave the most complex behavior but also showed the greatest potential to distinguish specific and nonspecific binding modes. We suggest a unified model that is expected to apply to many DNA binding proteins that exhibit affinity for nonspecific DNA. Although AAG strongly prefers to excise lesions from duplex DNA, nonspecific binding is comparable for single- and double-stranded nonspecific sites. The electrostatically driven binding of AAG to small DNA sites (∼5 nucleotides of single-stranded and ∼6 base pairs of duplex) facilitates the search for DNA damage in chromosomal DNA, which is bound by nucleosomes and other proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098249 | PMC |
http://dx.doi.org/10.1021/acs.biochem.8b00531 | DOI Listing |
Bioengineered
December 2025
Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.
Hum Cell
January 2025
Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!