3-Methyladenine (3-MA) is a chemical additive that enhances the specific productivity (q ) in recombinant Chinese hamster ovary (rCHO) cell lines. Different from its widely known function of inhibiting autophagy, 3-MA has instead shown to increase autophagic flux in various rCHO cell lines. Thus, the mechanism by which 3-MA enhances the q requires investigation. To evaluate the effect of 3-MA on transcriptome dynamics in rCHO cells, RNA-seq was performed with Fc-fusion protein-producing rCHO cells treated with 3-MA. By analyzing genes that were differentially expressed following the addition of 3-MA during culture, the role of 3-MA in the biological processes of rCHO cells was identified. One pathway markedly influenced by the addition of 3-MA was the unfolded protein response (UPR). Having a close relationship with autophagy, the UPR reestablishes protein-folding homeostasis under endoplasmic reticulum (ER) stress. The addition of 3-MA increased the expression of key regulators of the UPR, such as Atf4, Ddit3, and Creb3l3, further supporting the idea that the enhancement of ER capacity acts as a key in increasing the q . Consequently, the downstream effectors of UPR, which include autophagy-promoting genes, were upregulated as well. Hence, the role of 3-MA in increasing UPR pathway could have made a salient contribution to the increased autophagic flux in rCHO cells. Taken together, transcriptome analysis improved the understanding of the role of 3-MA in gene expression dynamics in rCHO cells and its mechanism in enhancing the q .

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26777DOI Listing

Publication Analysis

Top Keywords

rcho cells
20
addition 3-ma
12
role 3-ma
12
3-ma
11
specific productivity
8
transcriptome analysis
8
recombinant chinese
8
chinese hamster
8
hamster ovary
8
cells treated
8

Similar Publications

Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor.

Viruses

November 2024

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells, widely acknowledged as the preferred host system for industrial recombinant protein manufacturing, play a crucial role in developing pharmaceuticals, including anticancer therapeutics. Nevertheless, mammalian cell-based biopharmaceutical production methods are still beset by cellular constraints such as limited growth and poor productivity. MicroRNA-21 (miR-21) has a major impact on a variety of malignancies, including glioblastoma multiforme (GBM).

View Article and Find Full Text PDF

Sialyllactose supplementation enhances sialylation of Fc-fusion glycoprotein in recombinant Chinese hamster ovary cell culture.

J Biotechnol

September 2024

Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea. Electronic address:

Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively.

View Article and Find Full Text PDF

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44.

View Article and Find Full Text PDF

Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!