The village and street dogs represent a unique model of canine populations. In the absence of selective breeding and veterinary care, they are subject mostly to natural selection. Their analyses contribute to understanding general mechanisms governing the genetic diversity, evolution and adaptation. In this study, we analyzed the genetic diversity and population structure of African village dogs living in villages in three different geographical areas in Northern Kenya. Data obtained for neutral microsatellite molecular markers were compared with those computed for potentially non-neutral markers of candidate immunity-related genes. The neutral genetic diversity was similar to other comparable village dog populations studied so far. The overall genetic diversity in microsatellites was higher than the diversity of European pure breeds, but it was similar to the range of diversity observed in a group composed of many European breeds, indicating that the African population has maintained a large proportion of the genetic diversity of the canine species as a whole. Microsatellite marker diversity indicated that the entire population is subdivided into three genetically distinct, although closely related subpopulations. This genetical partitioning corresponded to their geographical separation and the observed gene flow well correlated with the communication patterns among the three localities. In contrast to neutral microsatellites, the genetic diversity in immunity-related candidate SNP markers was similar across all three subpopulations and to the European group. It seems that the genetic structure of this particular population of Kenyan village dogs is mostly determined by geographical and anthropogenic factors influencing the gene flow between various subpopulations rather than by biological factors, such as genetic contribution of original migrating populations and/or the pathogen-mediated selection. On the other hand, the study of oldest surviving dogs suggested a biological mechanism, i.e. a possible advantage of the overal heterozygosity marked by the the microsatellite loci analyzed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016929 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199506 | PLOS |
Nutr Metab (Lond)
January 2025
School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
Background: This study aims to explore the interplay between body mass index (BMI), neutrophils, triglyceride levels, and uric acid (UA). Understanding the causal correlation between UA and health indicators, specifically its association with the body's inflammatory conditions, is crucial for preventing and managing various diseases.
Methods: A retrospective analysis was conducted on 4,286 cases utilizing the Spearman correlation method.
BMC Pediatr
January 2025
Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Zhifu District, Yantai City, Shandong, 264000, China.
Background: Common clinical findings in patients with 19p13.3 duplication include intrauterine growth restriction, intellectual disability, developmental delay, microcephaly, and distinctive facial features. In this study, we report the case of a patient with 19p13.
View Article and Find Full Text PDFBMC Biol
January 2025
National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
Background: The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Laboratory Medicine, Affiliated Gaozhou People's Hospital, Guangdong Medical University, Maoming, 525200, P.R. China.
Background: DNA hypomethylation and uracil misincorporation into DNA, both of which have a very important correlation with colorectal carcinogenesis. Folate plays a crucial role in DNA synthesis, acting as a coenzyme in one-carbon metabolism, which involves the synthesis of purines, pyrimidines, and methyl groups. MTHFR, a key enzyme in folate metabolism, has been widely studied in relation to neural tube defects and hypertension, but its role in colorectal cancer remains underexplored.
View Article and Find Full Text PDFBMC Genomics
January 2025
Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada.
Background: Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!