Wheat grains are an important source of human food but current production amounts cannot meet world needs. Environmental conditions such as high temperature (above 30°C) could affect wheat production negatively. Plants from two wheat genotypes have been subjected to two growth temperature regimes. One set has been grown at an optimum daily mean temperature of 19°C while the second set of plants has been subjected to warming at 27°C from two to 13 days after anthesis (daa). While warming did not affect mean grain number per spike, it significantly reduced other yield-related indicators such as grain width, length, volume and maximal cell numbers in the endosperm. Whole genome expression analysis identified 6,258 and 5,220 genes, respectively, whose expression was affected by temperature in the two genotypes. Co-expression analysis using WGCNA (Weighted Gene Coexpression Network Analysis) uncovered modules (groups of co-expressed genes) associated with agronomic traits. In particular, modules enriched in genes related to nutrient reservoir and endopeptidase inhibitor activities were found to be positively associated with cell numbers in the endosperm. A hypothetical model pertaining to the effects of warming on gene expression and growth in wheat grain is proposed. Under moderately high temperature conditions, network analyses suggest a negative effect of the expression of genes related to seed storage proteins and starch biosynthesis on the grain size in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016909PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199434PLOS

Publication Analysis

Top Keywords

coexpression network
8
high temperature
8
cell numbers
8
numbers endosperm
8
wheat
6
grain
5
temperature
5
network phenotypic
4
analysis
4
phenotypic analysis
4

Similar Publications

Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.

Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.

View Article and Find Full Text PDF

Mitophagy, the selective degradation of mitochondria by autophagy, plays a crucial role in cancer progression and therapy response. This study aims to elucidate the role of mitophagy-related genes (MRGs) in cutaneous melanoma (CM) through single-cell RNA sequencing (scRNA-seq) and machine learning approaches, ultimately developing a predictive model for patient prognosis. The scRNA-seq data, bulk transcriptomic data, and clinical data of CM were obtained from publicly available databases.

View Article and Find Full Text PDF

The MADS-RIPENING INHIBITOR-DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits.

Plant Physiol

January 2025

Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.

Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.

Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.

View Article and Find Full Text PDF

Integration of multiomic data identifies core-module of inherited-retinal diseases.

Hum Mol Genet

January 2025

Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030  United States.

Human diseases with similar phenotypes can be interconnected through shared biological pathways, genes, or molecular mechanisms. Inherited retinal diseases (IRDs) cause photoreceptor dysfunction due to mutations in approximately 300 genes, affecting visual transduction, photoreceptor morphogenesis, and transcription factors, suggesting common pathobiological mechanisms. This study examined the functional relationship between known IRDs genes by integrating binding sites and gene expression data from the key photoreceptor transcription factors (TFs), Crx and Nrl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!