Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress.

Plant Signal Behav

a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi, Delhi - India.

Published: February 2019

Nitric oxide (NO) is established as a modulator of various developmental processes in plants through its interaction with multiple enzymatic and non-enzymatic biomolecules. Lateral root (LR) induction and extension in sunflower (Helianthus annuus L.) has been observed to be governed by a probable crosstalk between NO and ethylene biosynthesizing enzyme-ACC oxidase. NaCl (120 mM) stress not only lowers LR induction but also reduces their extension growth. Quenching of endogenous NO by raising seedlings in presence of 40 µM hemoglobin in the growth medium does not affect LR induction but lowers their extension growth. NaCl stress and NO depletion have additive effects on the enhancement of ACC oxidase activity, leading to enhanced ethylene biosynthesis. Role of NO has been further confirmed by raising sunflower seedlings in the presence of 20-60 µM of two NO donors, sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA). LR extension growth was higher with DETA than SNP as NO donor at 40 µM. Iron-deficiency also promoted LR proliferation. It also significantly lowered ACC oxidase activity in the seedling roots in response to salt stress. Based on the present findings it is proposed that salt stress-mediated LR proliferation is regulated by NO through its binding with ACC oxidase (an iron-containing enzyme). This results in the formation of a stable ternary complex (ACC-ACC oxidase-NO) which leads to the reduction in ethylene biosynthesis. Lesser availability of ethylene consequently brings about enhanced LR formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103280PMC
http://dx.doi.org/10.1080/15592324.2018.1473683DOI Listing

Publication Analysis

Top Keywords

acc oxidase
16
oxidase activity
12
extension growth
12
nitric oxide
8
lateral root
8
sunflower seedlings
8
salt stress
8
seedlings presence
8
ethylene biosynthesis
8
oxidase
5

Similar Publications

The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the gene family in rice remains largely unexplored.

View Article and Find Full Text PDF

Root-Knot Nematode Early Infection Suppresses Immune Response and Elicits the Antioxidant System in Tomato.

Int J Mol Sci

November 2024

Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy.

The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related () genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of (root-knot nematodes, RKNs).

View Article and Find Full Text PDF

Ethylene modulates wheat response to phosphate deficiency.

J Exp Bot

November 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.

Ethylene involves in the response to P deficiency in some model plants, but its relevance to wheat remains limited. Following our recent study demonstrating the role of differentially expressed genes (DEGs) encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate the remodelling of ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of exogenous ethylene analogue ethephon or ethylene inhibitors. ERFs with at least a two-fold change upon P deficiency were biasedly enriched on chromosome 4 B.

View Article and Find Full Text PDF

Ammonium (NH) enhances plant defense mechanisms but can be phytotoxic as the sole nitrogen source. To investigate the impact of a balanced NH and NO ratio on plant defense parameters without adverse effects, cucumber plants (Cucumis sativus L.) were grown under control (14 mM NO + 2 mM NH) and elevated level of NH (eNH, 8 mM NO+ 8 mM NH).

View Article and Find Full Text PDF

Insights into ACO genes across Rosaceae: evolution, expression, and regulatory networks in fruit development.

Genes Genomics

October 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.

Background: ACO (1-aminocyclopropane-1-carboxylic acid) serves as a pivotal enzyme within the plant ethylene synthesis pathway, exerting influence over critical facets of plant biology such as flowering, fruit ripening, and seed development.

Objective: This study aims to identify ACO genes from representative Rosaceae genomes, reconstruct their phylogenetic relationships by integrating synteny information, and investigate their expression patterns and networks during fruit development.

Methods: we utilize a specialized Hidden Markov Model (HMM), crafted on the sequence attributes of ACO gene-encoded proteins, to systematically identify and analyze ACO gene family members across 12 representative species within the Rosaceae botanical family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!