Human dihydroorotate dehydrogenase ( hDHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis, the conversion of dihydroorotate to orotate. hDHODH has recently been found to be associated with acute myelogenous leukemia, a disease for which the standard of intensive care has not changed over decades. This work presents a novel class of hDHODH inhibitors, which are based on an unusual carboxylic group bioisostere 2-hydroxypyrazolo[1,5- a]pyridine, that has been designed starting from brequinar, one of the most potent hDHODH inhibitors. A combination of structure-based and ligand-based strategies produced compound 4, which shows brequinar-like hDHODH potency in vitro and is superior in terms of cytotoxicity and immunosuppression. Compound 4 also restores myeloid differentiation in leukemia cell lines at concentrations that are one log digit lower than those achieved in experiments with brequinar. This Article reports the design, synthesis, SAR, X-ray crystallography, biological assays, and physicochemical characterization of the new class of hDHODH inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.8b00373DOI Listing

Publication Analysis

Top Keywords

hdhodh inhibitors
12
myeloid differentiation
8
2-hydroxypyrazolo[15- a]pyridine
8
human dihydroorotate
8
dihydroorotate dehydrogenase
8
class hdhodh
8
hdhodh
6
targeting myeloid
4
differentiation potent
4
potent 2-hydroxypyrazolo[15-
4

Similar Publications

FTO, an -methyladenosine (mA) and ,2'--dimethyladenosine (mA) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF

Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors.

J Comput Chem

January 2025

Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Liaoning University, Shenyang, Liaoning, China.

Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking structures of complexes generated by AutoDock Vina, we integrate interaction features and ligand features, and employ support vector regression to develop a target-specific scoring function for hDHODH (TSSF-hDHODH). The Pearson correlation coefficient values of TSSF-hDHODH in the cross-validation and external validation are 0.

View Article and Find Full Text PDF

Radiosynthesis of [F]brequinar for PET imaging of hDHODH for potential studies of acute myeloid leukemia and cancers.

RSC Med Chem

July 2024

Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605.

Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an imaging probe that is able to demonstrate target engagement is critical and desirable.

View Article and Find Full Text PDF

Discovery of piperine derivatives as inhibitors of human dihydroorotate dehydrogenase to induce ferroptosis in cancer cells.

Bioorg Chem

September 2024

Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China. Electronic address:

Inhibition of human dihydroorotate dehydrogenase (hDHODH) represents a promising strategy for suppressing the proliferation of cancer cells. To identify novel and potent hDHODH inhibitors, a total of 28 piperine derivatives were designed and synthesized. Their cytotoxicities against three human cancer cell lines (NCI-H226, HCT-116, and MDA-MB-231) and hDHODH inhibitory activities were also evaluated.

View Article and Find Full Text PDF

Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!