Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352985PMC
http://dx.doi.org/10.1111/ajt.14984DOI Listing

Publication Analysis

Top Keywords

allograft tolerance
12
tolerance
8
cell tolerance
8
tolerance alloantigens
8
maintaining cell
4
alloantigens lessons
4
lessons animal
4
animal studies
4
studies achieving
4
achieving host
4

Similar Publications

Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells.

J Immunol

January 2025

Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.

View Article and Find Full Text PDF

iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts.

Proc Natl Acad Sci U S A

March 2025

Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.

Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.

View Article and Find Full Text PDF

Introduction: GStemHep cells are human cryopreserved hepatic progenitors derived from pluripotent of stem cells (GStem cells) using a cGMP-compliant protocol. They were highly effective in rescuing mice from acute liver failure.

Methods: The objective of this study was to analyze the immunogenicity and immunoregulatory properties of GStemHep cells.

View Article and Find Full Text PDF

Background: Diabetic ketoacidosis (DKA) is a serious complication of hyperglycemic emergency caused by insulin deficiency through accelerated liver gluconeogenesis and glycogenolysis. DKA is most common in type 1 diabetes (T1D). Transplantation of islet cells and pancreas is an alternative to insulin injection for treating T1D.

View Article and Find Full Text PDF

Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson's disease mice.

Stem Cell Res Ther

March 2025

Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.

Background: Wilson's disease (WD) is a genetic disorder that impairs the excretion of copper in hepatocytes and results in excessive copper deposition in multiple organs. The replacement of disordered hepatocytes with functional hepatocytes can serve as a lifelong therapeutic strategy for the treatment of WD. The aim of this study was to determine the hepatocyte repopulation effects of fibroblast-derived hepatic progenitor cells in the treatment of WD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!