Predicting community responses to disturbance is a major challenge for both ecology and ecosystem management. A particularly challenging issue is that the same type and intensity of disturbance can have different impacts in different habitats. We investigate how habitat contingency influences ant community responses to disturbance in arid Australia, testing the hypothesis that disturbance has a greater impact in more complex habitats. We also assess the effectiveness of a highly simplified ant assessment protocol that considers larger species only. We sampled ants at 46 sites from two habitats (Chandler, low chenopod shrubland; and mulga, low woodland) with contrasting complexity, using distance from water as a surrogate for variation in grazing intensity. We assessed variation in habitat structural variables (basal area of perennial grass, and cover of herbs, litter, and bare ground) and ant communities in relation to habitat and distance from water, first using data from the entire ant community and then for larger ants (>4 mm body length) only. Site species richness was almost twice as high in mulga, the more structurally complex habitat, than in Chandler, and ant communities in mulga showed far more variation in relation to distance from water. Litter cover was the key environmental variable associated with the interaction between grazing and habitat: it increased with increasing distance from water in mulga and was virtually absent from Chandler. Analysis of only larger species revealed the same patterns of variation in ant abundance, species richness and composition in relation to habitat and grazing as shown by entire ant communities. Our findings support the hypothesis that disturbance impacts on faunal communities increase with increasing habitat complexity. An appreciation of such habitat contingency is important for a predictive understanding and therefore effective management of disturbances such as rangeland grazing. Our findings also show that simplified assessment can provide robust information on the responses of highly diverse ant communities to disturbance, which enhances their feasibility for use as bio-indicators in land management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.1770 | DOI Listing |
Appl Environ Microbiol
December 2024
Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Advances in DNA metabarcoding have greatly expanded our knowledge of microbial communities in recent years. Pipelines and parameters have been tested extensively for bacterial metabarcoding using the 16S rRNA gene and best practices are largely established. For fungal metabarcoding using the internal transcribed spacer (ITS) gene, however, only a few studies have considered how such pipelines and parameters can affect community prediction.
View Article and Find Full Text PDFCurr Res Insect Sci
November 2024
Department of Biology, University of Central Florida, Orlando FL 32816, USA.
The bacterial microbiome of the ant has been well characterized across body regions and maturation levels. However, potential effects of entomopathogens on the gut microbiome, and the fungal communities therein, are yet to be assessed. Additionally, the mycobiome remains often overlooked despite playing a vital role in gut ecology with potential implications for health and infection outcomes.
View Article and Find Full Text PDFThe conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.
View Article and Find Full Text PDFHypertension
December 2024
Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (S.W.D., F.L.K., H.C., R.-A.N.T.-O., L.H.N., J.L.C., K.J.M., L.A.L., M.Z., S.P.J.).
Background: Orthostatic hypertension is an emerging risk factor for adverse events. Recent consensus statements combine an increase in blood pressure upon standing with standing hypertension, but whether these 2 components have similar risk associations with cardiovascular disease (CVD) is unknown.
Methods: The ARIC study (Atherosclerosis Risk in Communities) measured supine and standing blood pressure during visit 1 (1987-1989).
Oecologia
December 2024
Department of Biology, University of Central Florida, Orlando, FL, USA.
Global change drivers such as habitat fragmentation, species invasion, and climate warming can act synergistically upon native systems; however, global change drivers can be neutralized if they induce antagonistic interactions in ecological communities. Deadwood comprises a considerable portion of forest carbon, and it functions as refuge, nesting habitat and nutrient source for plant, animal and microbial communities. We predicted that thermophilic termites would increase wood decomposition with experimental warming and in forest edge habitat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!