The explosive growth of information from genetics and genomics has led to an appreciation of the conservation of gene regulatory networks between organisms, and between development and regeneration. With ever increasing knowledge, it will be possible to intervene therapeutically to regulate these networks, which will lead to new therapies to induce regeneration. The question then becomes how to do this, rather then when to try. Our thesis is that the time is now, and that this feat can be achieved by combining the insights provided by developmental biologists with the technologies being developed by biomaterial engineers, to achieve the goal of engineering regeneration. We thus envision regenerative engineering as the next step toward achieving the goal of human regeneration. Among the most important discoveries about regeneration from studies of salamanders that regenerate exceptionally well, is that both pattern-following and pattern-forming cells are required. Much progress is being made toward understanding the former cells, but little is known about the cells that control positional information and pattern formation. Within the near future, it will become possible to provide the information needed for regeneration exogenously in the form of an engineered extracellular matrix that is a biomimetic of the endogenous information. Since growth factors (morphogens) can control pattern formation, an engineered grid could be based on spatially organized patterns of sulfation of glycosaminoglycans that control the behavior of cells by modulating morphogen activity. Progress in engineering the positional information grid for regeneration will necessitate learning the sulfation codes associated with successful regeneration in animals such as salamanders.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.170269dgDOI Listing

Publication Analysis

Top Keywords

regeneration
9
pattern formation
8
regeneration sooner
4
sooner explosive
4
explosive growth
4
growth genetics
4
genetics genomics
4
genomics led
4
led appreciation
4
appreciation conservation
4

Similar Publications

Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications.

Drug Des Devel Ther

January 2025

Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People's Republic of China.

Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

Living tissues are active multifunctional materials capable of generating, sensing, withstanding and responding to mechanical stress. These capabilities enable tissues to adopt complex shapes during development, to sustain those shapes during homeostasis, and to restore them during healing and regeneration. Abnormal stress is associated with a broad range of pathologies, including developmental defects, inflammatory diseases, tumor growth and metastasis.

View Article and Find Full Text PDF

A comprehensive review of challenges and opportunities for stem cell research in India.

Perspect Clin Res

August 2024

Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, UP, India.

Stem cell research is a major focus for scientific and medical communities worldwide due to the potential for stem cells to restore function lost due to disease, trauma, congenital abnormalities, and aging. Stem cells can repair, replace, or regenerate damaged cells, tissues, or organs, making them an important area of research in regenerative medicine. India is emerging as a prominent hub for the development of stem cell therapy (SCT), and it is important to assess the current state of stem cell research in India and the potential for advancement to promote stem cell-based therapy.

View Article and Find Full Text PDF

Predicting risk of maternal critical care admission in Scotland: Development of a risk prediction model.

J Intensive Care Soc

January 2025

Department of Anaesthesia, Critical Care, and Pain Medicine, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK.

Background: Identifying women at highest or lowest risk of perinatal intensive care unit (ICU) admission may enable clinicians to risk stratify women antenatally so that enhanced care or elective admission to ICU may be considered or excluded in birthing plans. We aimed to develop a statistical model to predict the risk of maternal ICU admission.

Methods: We studied 762,918 pregnancies between 2005 and 2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!