Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agriculture is now expanding remains poorly constrained. To quantify the effect of intensive agriculture on tropical soil C, we compared C stocks, radiocarbon, and stable C isotopes to 2 m depth from forests and soybean cropland created from former pasture in Mato Grosso, Brazil. We hypothesized that soil disturbance, higher soil temperatures (+2°C), and lower OM inputs from soybeans would increase soil C turnover and deplete C stocks relative to nearby forest soils. However, we found reduced C concentrations and stocks only in surface soils (0-10 cm) of soybean cropland compared with forests, and these differences could be explained by soil mixing during plowing. The amount and ΔC of respired CO to 50 cm depth were significantly lower from soybean soils, yet CO production at 2 m deep was low in both forest and soybean soils. Mean surface soil δC decreased by 0.5‰ between 2009 and 2013 in soybean cropland, suggesting low OM inputs from soybeans. Together these findings suggest the following: (1) soil C is relatively resistant to changes in land use and (2) conversion to cropland caused a small, measurable reduction in the fast-cycling C pool through reduced OM inputs, mobilization of older C from soil mixing, and/or destabilization of SOM in surface soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993338PMC
http://dx.doi.org/10.1002/2017JG004269DOI Listing

Publication Analysis

Top Keywords

soybean cropland
16
soil
11
soil carbon
8
mato grosso
8
grosso brazil
8
conversion cropland
8
inputs soybeans
8
surface soils
8
soil mixing
8
soybean soils
8

Similar Publications

Atmospheric nitrous oxide (NO) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO. NO emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of NO emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of NO emissions using structural equation modeling.

View Article and Find Full Text PDF

Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.

View Article and Find Full Text PDF

Effects of intercropping with legume forage on the rhizosphere microbial community structure of tea plants.

Front Microbiol

November 2024

Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, China.

Context: Intercropping in agriculture is crucial for addressing challenges in intensive tea farming. Forage legumes reduce fertilizer dependence and significantly boost productivity. Currently, intercropping with legumes enhances the environmental conditions of tea plantations and improves tea quality.

View Article and Find Full Text PDF

The LTAR Cropland Common Experiment at Lower Chesapeake Bay.

J Environ Qual

November 2024

USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland, USA.

The Lower Chesapeake Bay (LCB) Long-Term Agroecosystem Research (LTAR) Common Experiment (CE) located in Beltsville, MD, focuses on research of concern to producers of the major regional crops, which are corn (Zea mays L.), soybean [Glycine max (L.) Merr.

View Article and Find Full Text PDF

An integrated tool for cost-effectively applying nutrient management practices for corn, soybeans, and wheat.

Sci Total Environ

December 2024

Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907, USA.

Harmful algal blooms (HABs) problem in Lake Erie has become critical recently-primarily triggered by phosphorus losses from cropland in the Maumee River watershed (major crops of corn/soybeans/wheat). Implementing agricultural best management practices (BMPs) is crucial to reduce excess nutrient loadings. Nutrient management is the management of nutrient applications for crop production that maximizes nutrient use efficiencies and minimizes nutrient losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!