Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Adipose-derived stem cells (ASCs) are capable of secreting regenerative growth factors and replacing multiple tissue types. Although current literature suggests that ASCs accelerate wound healing and reduce scarring, the dose-response relationship has not been adequately investigated in large animals. We sought to establish a porcine model to optimize dose and delivery.
Methods: Four-centimeter circular, full thickness excisional wounds were created on the backs of Yorkshire pigs. Fluorescently labeled allogeneic porcine ASCs were injected into the superficial wound bed and around the wound perimeter at high (3.0 × 10 cells/cm; n = 8), medium (1.0 × 10 cells/cm; n = 8), and low (0.3 × 10 cells/cm; n = 8) doses. Control wounds received saline injections (n = 8) or no treatment (n = 8). Dressings were changed twice per week, and wound closure was tracked by surface area tracing. Animals were sacrificed at 1 and 2 wk. Wounds were harvested for real-time quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and ASC tracking.
Results: Labeled ASCs integrated into treated wounds by 1 wk in a dose-dependent fashion. Epithelial coverage was achieved by 14 d in all wounds. Wounds receiving high-dose ASCs exhibited thicker granulating neodermis at 7 d and greater wound contraction at 14 d. real-time quantitative reverse transcriptase polymerase chain reaction revealed improved collagen 1:collagen 3 (Col1:Col3) ratio in the medium-dose group and enhanced α-smooth muscle actin in the high-dose group at 14 d. Western blot demonstrated increased cluster of differentiation 31 protein at 2 wk in wounds receiving >10 cells/cm.
Conclusions: Doses up to 3.0 × 10 cells/cm were well-tolerated. High-dose ASCs accelerate wound contraction, enhance neovascularization, and may improve scar quality in excisional wounds healing by secondary intention. Doses greater than those previously used may be necessary to achieve desired effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2018.03.068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!