Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Oxidative stress secondary to bile-acid exposure has been associated with metaplastic degeneration of normal esophageal mucosa into Barrett's esophagus (BE) cells and eventually esophageal adenocarcinoma. We previously reported that the macromolecular response of BE cells to this stress was largely regulated by the expression of manganese-dependent mitochondrial superoxide dismutase (MnSOD). As the mitochondrion plays a vital role in MnSOD activation, this study sought to determine the location and activity of MnSOD within BE cells after exposure to oxidative stress.
Methods: A human BE cell line, BAR-T cell, was exposed 0.4 mM concentrations of taurocholic acid (Tau) or a 0.4 mM 1:1 mixture of bile salts for 4 h. Cell viability was performed with 3-(4, 5-dimthyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays. Proteins were extracted and separated into mitochondrial, nuclear, and cytoplasmic fractions followed by analysis by a western blot and enzymatic activities.
Results: BAR-T cell showed resistance to the bile-salt insults. Expression of MnSOD was significantly increased in the cells exposed to a mixture of bile acids and Tau versus control. Mitochondria MnSOD is abundant and highly active. Nuclear fraction displayed presence of both MnSOD and Cu/zinc superoxide dismutase secondary to bile-acid exposure; however, the MnSOD was inactive in nuclear fraction.
Conclusions: This is the first study to specifically evaluate cellular fraction MnSOD expression, increased in BE cells in response to the oxidative stress of bile exposure. Mitochondrial MnSOD contributes to resistance of BAR-T cells to the bile-salt insults. Further investigation is required to determine the potential correlation between bile exposure and BE to adenocarcinoma progression via MnSOD-mediated cell signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2018.03.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!