Isoniazid (INH) is a well-known therapeutic and preventive agent against tuberculosis. However, high rates of side effects with various symptoms concerning hepatotoxicity and neurotoxicity have been reported, hindering its wide and safe application in clinic. In this investigation, rats were intoxicated with INH by gavage at doses of 200 and 400 mg/kg for 7 consecutive days to develop a rat model of acute INH-induced toxicity, which was investigated by a H NMR-based metabolomics complemented with clinical assays, histopathological inspection and western blotting. INH decreased the weights of dosed rats and induced seizure and hepatic steatosis dose-dependently. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of the NMR profiles of rat livers, brains and serum revealed that INH dose-dependently induced oxidative stress, disorders of excitatory and inhibitory amino acid neurotransmitters, and disturbances of energy metabolism and osmotic balance, which could help clarify the mechanisms of INH-induced hepatotoxicity and neurotoxicity. This integrated metabolomics approach showcased its ability to characterize the global metabolic status of organism, providing a powerful and feasible tool to probe drug induced toxicity or side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2018.05.032 | DOI Listing |
J Adv Res
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China. Electronic address:
Background: Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causing multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health, progeny by its ability to cross placental barriers.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
Background: Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns.
Methods: Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines.
Res Vet Sci
January 2025
Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticide Lab, Agricultural Research Center, Alexandria, Egypt.
The insecticides Lambda-cyhalothrin (LCT) and imidacloprid (IMD) are extensively utilized in Egyptian agriculture. Embryonic chicken is a readily accessible model organism commonly employed in various studies. Eggs of (Gallus Gallus) chicken were immersed in an aqueous solution of two sub-lethal concentrations (0.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Aflatoxins (AFTs) are a form of mycotoxins mainly produced by and , which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!