Purpose of present study is to evaluate whether the Pre-Macular Bursa (PMB) modifies Wall Shear Stress (WSS) at the retinal surface during saccadic movements. We created a mathematical model consisting of 25,000 grid cells and simulated a horizontal saccade spanning 50° in 0.17s, both in absence and in presence of the PMB. Wall Shear Stress SS was computed throughout the retinal surface and the posterior pole was divided into 3 Zones comprising 400 nodes each: Zone 1 (radius 3.5 mm; 0°-17°) corresponding to the PMB area; Zone 2 (concentric annular area 5 mm in radius; 22°) and Zone 3 (concentric annular area 5.5 mm; 28°). The PMB reduced WSS significantly at the macula and increased it in the immediate surroundings. Average WSS in Zone 1 was 1.53 ± 1.01 (max 4.23 Pa) with PMB Vs 6.94 ± 9.23 (max 35.83 Pa) without. Zone 2 WSS was 9.39 ± 10.33 (max 48.36 Pa) with PMB Vs 6.95 ± 9.40 (max 38.60 Pa) without Zone 3 WSS was 8.41 ± 10.03 (max 43.16 Pa) with PMB Vs 6.88 ± 9.42 (max 39.43 Pa) without (p < 0.001 in all cases). The PMB significantly reduces WSS over the retinal surface underlying the bursa region; conversely, WSS slightly increases it in the immediate neighboring areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2018.06.022 | DOI Listing |
Sci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFJ Clin Med
January 2025
Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.
: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. : Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomato-logy & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: The triply periodic minimal surface (TPMS) Gyroid porous scaffolds were built with identical porosity while varying pore sizes were used by fluid mechanics finite element analysis (FEA) to simulate the microenvironment. The effects of scaffolds with different pore sizes on cell adhesion, proliferation, and osteogenic differentiation were evaluated through calculating fluid velocity, wall shear stress, and permeability in the scaffolds.
Methods: Three types of gyroid porous scaffolds, with pore sizes of 400, 600 and 800 μm, were established by nTopology software.
J Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!