Unloader braces are one non-invasive treatment of knee osteoarthritis, which primarily function by applying an external abduction moment to the joint to reduce loads in the medial compartment of the knee. We developed a novel method using brace deflection to estimate the mechanical effect of valgus braces and validated this model using strain gauge instrumentation. Three subjects performed static and walking trials, in which the moment applied by an instrumented brace was calculated using the deflection and strain methods. The deflection method predicted average brace moments of 8.7 Nm across static trials; mean error between the deflection model predictions and the gold-standard strain gauge measurements was 0.32 Nm. Mean brace moment predictions throughout gait ranged from 7.1 to 8.7 Nm using the deflection model. Maximum differences (MAE) over the gait cycle in mean and peak brace moments between methods were 1.50 Nm (0.96) and 0.60 Nm (0.42). Our proposed method enables quantification of brace abduction moments without the use of custom instrumentation. While the deflection-based method is similar to that implemented by Schmalz et al. (2010), the proposed method isolates abduction deflection from the 3 DOF angular changes that occur within the brace. Though the model should be viewed with more caution during swing (MAE = 1.16 Nm), it was shown that the accuracy is influenced by the uncertainty in angle measurement due to cluster spacing. In conclusion, the results demonstrate that the deflection-based method developed can predict comparable brace moments to those of the previously established strain method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2018.05.035DOI Listing

Publication Analysis

Top Keywords

brace moments
12
brace
9
knee osteoarthritis
8
strain gauge
8
deflection model
8
proposed method
8
deflection-based method
8
method
7
deflection
6
validation method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!