Spoken words are processed during dexmedetomidine-induced unresponsiveness.

Br J Anaesth

Department of Psychology and Speech-Language Pathology, and Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden.

Published: July 2018

Background: Studying the effects of anaesthetic drugs on the processing of semantic stimuli could yield insights into how brain functions change in the transition from wakefulness to unresponsiveness. Here, we explored the N400 event-related potential during dexmedetomidine- and propofol-induced unresponsiveness.

Methods: Forty-seven healthy subjects were randomised to receive either dexmedetomidine (n=23) or propofol (n=24) in this open-label parallel-group study. Loss of responsiveness was achieved by stepwise increments of pseudo-steady-state plasma concentrations, and presumed loss of consciousness was induced using 1.5 times the concentration required for loss of responsiveness. Pre-recorded spoken sentences ending either with an expected (congruous) or an unexpected (incongruous) word were presented during unresponsiveness. The resulting electroencephalogram data were analysed for the presence of the N400 component, and for the N400 effect defined as the difference between the N400 components elicited by congruous and incongruous stimuli, in the time window 300-600 ms post-stimulus. Recognition of the presented stimuli was tested after recovery of responsiveness.

Results: The N400 effect was not observed during dexmedetomidine- or propofol-induced unresponsiveness. The N400 component, however, persisted during dexmedetomidine administration. The N400 component elicited by congruous stimuli during unresponsiveness in the dexmedetomidine group resembled the large component evoked by incongruous stimuli at the awake baseline. After recovery, no recognition of the stimuli heard during unresponsiveness occurred.

Conclusions: Dexmedetomidine and propofol disrupt the discrimination of congruous and incongruous spoken sentences, and recognition memory at loss of responsiveness. However, the processing of words is partially preserved during dexmedetomidine-induced unresponsiveness.

Clinical Trial Registration: NCT01889004.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bja.2018.04.032DOI Listing

Publication Analysis

Top Keywords

loss responsiveness
12
n400 component
12
dexmedetomidine- propofol-induced
8
spoken sentences
8
elicited congruous
8
congruous incongruous
8
incongruous stimuli
8
n400
7
unresponsiveness
6
stimuli
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!