The dynamics of the C(D)+H/D/HD reactions at low temperature.

J Chem Phys

State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

Published: June 2018

We present results of a theoretical investigation on the dynamics of the C(D)+H reaction and the corresponding isotopic variants in which the carbon atom collides either with D or HD. Statistical techniques have been tested in comparison with the recent experimental information at low temperature (T < 300 K) and exact quantum mechanical calculations reported on the title reactions in an attempt to establish their possible complex-forming character. Our study includes the calculation of probabilities, rotational distributions, integral cross sections, differential cross sections, and rate constants. Previous quantum mechanical results have been extended here to complete the analysis of the underlying mechanisms which govern the collision process.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5026454DOI Listing

Publication Analysis

Top Keywords

low temperature
8
quantum mechanical
8
cross sections
8
dynamics cd+h/d/hd
4
cd+h/d/hd reactions
4
reactions low
4
temperature theoretical
4
theoretical investigation
4
investigation dynamics
4
dynamics cd+h
4

Similar Publications

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Decoupling Carrier Dynamics and Energy Transport in Ultrafast Near-Field Nanoscopy.

Nano Lett

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Ultrafast near-field optical nanoscopy has emerged as a powerful platform to characterize low-dimensional materials. While analytical and numerical models have been established to account for photoexcited carrier dynamics, quantitative evaluation of the associated pulsed laser heating remains elusive. Here, we decouple the photocarrier density and temperature increase in near-field nanoscopy by integrating the two-temperature model (TTM) with finite-difference time-domain (FDTD) simulations.

View Article and Find Full Text PDF

Arctic soil carbon insulation averts large spring cooling from surface-atmosphere feedbacks.

Proc Natl Acad Sci U S A

January 2025

Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.

The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.

View Article and Find Full Text PDF

Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions ( < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor.

View Article and Find Full Text PDF

Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!