A generalized unimolecular impulsive model for curved reaction path.

J Chem Phys

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.

Published: June 2018

This work aims to introduce a generalized impulsive model for unimolecular dissociation processes. This model allows us to take into account the curvature of the reaction path explicitly. It is a generalization of the previously developed multi-center impulsive model [P.-Y. Tsai and K.-C. Lin, J. Phys. Chem. A 119, 29 (2015)]. Several limitations of conventional impulsive models are eliminated by this study: (1) Unlike conventional impulsive models, in which a single molecular geometry is responsible for the impulse determination, the gradients on the whole dissociation path are taken into account. The model can treat dissociation pathways with large curvatures and loose saddle points. (2) The method can describe the vibrational excitation of polyatomic fragments due to the bond formation by multi-center impulse. (3) The available energy in conventional impulsive models is separated into uncoupled statistical and impulsive energy reservoirs, while the interplay between these reservoirs is allowed in the new model. (4) The quantum state correlation between fragments can be preserved in analysis. Dissociations of several molecular systems including the roaming pathways of formaldehyde, nitrate radical, acetaldehyde, and glyoxal are chosen as benchmarks. The predicted photofragment energy and vector distributions are consistent with the experimental results reported previously. In these examples, the capability of the new model to treat the curved dissociation path, loose saddle points, polyatomic fragments, and multiple-body dissociation is verified. As a cheaper computational tool with respect to ab initio on-the-fly direct dynamic simulations, this model can provide detailed information on the energy disposal, quantum state correlation, and stereodynamics in unimolecular dissociation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5030488DOI Listing

Publication Analysis

Top Keywords

impulsive model
12
conventional impulsive
12
impulsive models
12
model
8
reaction path
8
unimolecular dissociation
8
dissociation processes
8
dissociation path
8
model treat
8
loose saddle
8

Similar Publications

Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.

View Article and Find Full Text PDF

Prolonged gaming time, along with increased impulsivity-a key element of poor self-regulation-has been identified as linked to gaming disorder. Despite existing studies in this field, the relationship between impulsivity and gaming time remains poorly understood. The present study explored the connections between impulsivity, measured both by self-report and behavioral assessments, gaming time and gaming disorder within a cohort of 82 participants.

View Article and Find Full Text PDF

Purpose: To compare vestibulo-ocular reflex (VOR) gain values, gain symmetry between the semicircular canals (SCCs), and saccadic parameters in patients with a nosological diagnosis of Ménière's disease (MD) and vestibular migraine (VM).

Methods: Observational, descriptive, cross-sectional, retrospective study, approved by the Research Ethics Committee, under evaluation report number 4.462.

View Article and Find Full Text PDF

Psychiatric, Neurological, and Somatic Comorbidities in Intermittent Explosive Disorder.

JAMA Psychiatry

January 2025

Department of Psychiatry and Behavioral Sciences, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York.

Importance: Intermittent explosive disorder (IED) is an understudied psychiatric condition marked by impulsive aggression and poorly regulated emotional control, often resulting in interpersonal and societal consequences. Better understanding of comorbidities can improve screening, diagnosis, and treatment.

Objective: To investigate the prevalence of IED and its associations with psychiatric, neurological, and somatic disorders.

View Article and Find Full Text PDF

Background: Food addiction and an impulsive personality can increase overeating, which can lead to weight gain. The amygdala and nucleus accumbens (NAcc) are critical for regulating obesogenic behaviour. However, whether the amygdala or the NAcc acts as the neural basis for the regulation of food addiction, impulsive personality, and body weight remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!