A disaccharide, trehalose, is a main hemolymph sugar of the legume pod borer, Maruca vitrata larvae, but its titers fluctuated with feeding activity. During diurnal feeding in the photophase, hemolymph trehalose remained at a relatively low level (69 mM) and increased (98 mM) during scotophase. Starvation significantly increased the hemolymph trehalose level, in which the elevation of trehalose titers was dependent on the non-feeding period. The down-regulation of the trehalose level during the active feeding period seemed to result from mediation of the insulin/IGF signal (IIS). Injection of a porcine insulin suppressed the trehalose level in a dose-dependent manner. Genes associated with IIS of M. vitrata were predicted from its larval transcriptome, and their expression was confirmed in different developmental stages and tissues. All seven IIS genes selected were expressed in all developmental stages and different tissues. Silencing of four IIS genes (insulin receptor, Forkhead box O, a serine-threonine protein kinase, target of rapamycin) by RNA interference significantly modulated the hemolymph trehalose level. Starvation treatment changed expression of two trehalose metabolism-associated genes (trehalose phosphate synthase (TPS) and trehalase (TRE)) as well as the IIS genes. Silencing of TPS or TRE expression significantly down- or up-regulated the hemolymph trehalose level, respectively. In addition, silencing of IIS genes altered both TPS and TRE expression, indicating a functional link between IIS and trehalose metabolism. These results suggest that nutrients obtained from feeding activate IIS of M. vitrata, which then down-regulates the hemolymph trehalose level by altering trehalose metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2018.06.006 | DOI Listing |
Arch Insect Biochem Physiol
January 2025
College of Agriculture, Ibaraki University, Inashiki, Japan.
Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.
View Article and Find Full Text PDFbioRxiv
December 2024
Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA.
Trehalose is a non-reducing disaccharide that is the major sugar found in insect hemolymph fluid. Trehalose provides energy, and promotes growth, metamorphosis, stress recovery, chitin synthesis, and insect flight. Trehalase is the only enzyme responsible for the hydrolysis of trehalose, which makes it an attractive molecular target.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Plant Medicals, Andong National University, Andong, 36729, Korea.
Arch Insect Biochem Physiol
October 2024
College of Agriculture, Ibaraki University, Ibaraki, Japan.
Trehalose, a nonreducing disaccharide composed of two glucose molecules, functions as a critical energy source in various insect tissues and organs and is the predominant sugar component of the hemolymph. The pea aphid, Acyrthosiphon pisum, exhibits higher hemolymph trehalose levels than other insects. However, the dynamics of hemolymph trehalose levels throughout its life stages remain unclear owing to the challenges associated with obtaining hemolymph from these small insects.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
Solanine (SOL), chaconine (CHA), and tomatine (TOM) are plant secondary metabolites produced mainly by the species of Solanaceae family, such as tomato Solanum lycopersicum L. These glycoalkaloids (GAs) have a wide range of biological activity, also in insects. However, their mechanisms of action are not precisely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!