Local axonal translation of specific mRNA species plays an important role in axon maintenance, plasticity during development and recovery from injury. Recently, disrupted axonal mRNA transport and translation have been linked to neurodegenerative disorders. To identify mRNA species that are actively transported to axons and play an important role in axonal physiology, we mapped the axonal transcriptome of human induced pluripotent stem cell (iPSC)-derived motor neurons using permeable inserts to obtain large amounts of enriched axonal material for RNA isolation and sequencing. Motor neurons from healthy subjects were used to determine differences in gene expression profiles between neuronal somatodendritic and axonal compartments. Our results demonstrate that several transcripts were enriched in either the axon or neuronal bodies. Gene ontology analysis demonstrated enrichment in the axonal compartment for transcripts associated with mitochondrial electron transport, microtubule-based axonal transport and ER-associated protein catabolism. These results suggest that local translation of mRNAs is required to meet the high-energy demand of axons and to support microtubule-based axonal transport. Interestingly, several transcripts related to human genetic disorders associated with axonal degeneration (inherited axonopathies) were identified among the mRNA species enriched in motor axons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713456 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2018.06.008 | DOI Listing |
J Physiol
December 2024
Division of Reconstructive and Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
The frequent poor functional outcomes after delayed surgical repair of injured human peripheral nerves results in progressive downregulation of growth-associated genes in parallel with reduced neuronal regenerative capacity under each of the experimental conditions of chronic axotomy of neurones that remain without target contact, chronic distal nerve stump denervation, and chronic muscle denervation. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) accelerates the outgrowth of regenerating axons across the surgical site of microsurgical repair of a transected nerve. Exercise programmes also promote nerve regeneration with the combination of ES and exercise being the most effective.
View Article and Find Full Text PDFNeuroscience
December 2024
Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:
Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.
View Article and Find Full Text PDFHum Genet
December 2024
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
J Pharmacol Sci
January 2025
Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
Paclitaxel induces peripheral neuropathy, which is considered a dose-limiting factor. However, appropriate prophylactic agents are currently unavailable. We investigated the prophylactic effects of calmangafodipir, a superoxide dismutase mimetic, on paclitaxel-induced peripheral neuropathy using a male rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!