Rationale: Tetrahydroberberine (THB), tetrahydrocoptisine (THCP) and tetrahydrocolumbamine (THCB) belong to the tetrahydroprotoberberine (THPB) alkaloids. Most of them have been extensively studied because of their pharmacological activities such as anti-hypertension, anti-arrhythmia, antimicrobial activity and antioxidant. However, limited information on the pharmacokinetics and metabolism of the three alkaloids has been reported. The purpose of this study was to investigate the in vitro metabolism of THB, THCP and THCB in rat liver S9 by using a rapid and accurate high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) method.

Methods: The incubation mixture was processed with 15% trichloroacetic acid. Chromatographic separation of the three THPB alkaloids and their metabolites was achieved by HPLC/QqTOF-MS and accurate mass measurements of metabolites were automatically performed through data-dependent acquisition in only a 30-min analysis. The detailed structural elucidations of these metabolites were performed by comparing the changes in their accurate molecular masses, elemental compositions and product ions with those of the parent drug.

Results: Five, five and four metabolites of THB, THCP and THCB were identified in rat liver S9, respectively. The results show that O-demethylenation of the 9,10-vicinal methoxyl group was the main metabolic pathway of THB and THCB and that demethylenation of the two methylenedioxy groups was the main metabolic pathway of THCP. In addition, minor oxidation and methylation reactions could occur for these alkaloids in rat liver S9.

Conclusions: This was the first investigation of the in vitro metabolism of THB, THCP and THCB in rat liver S9 by using a sensitive and accurate HPLC/QqTOF-MS method. The tentatively proposed metabolic pathways of the three alkaloids will provide a basis for further studies of the in vivo metabolism of the three compounds in animals and humans.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8199DOI Listing

Publication Analysis

Top Keywords

rat liver
20
thb thcp
12
thcp thcb
12
alkaloids rat
8
high-performance liquid
8
liquid chromatography/quadrupole
8
chromatography/quadrupole time-of-flight
8
time-of-flight mass
8
mass spectrometry
8
thpb alkaloids
8

Similar Publications

Objective: This study aims to investigate the preventive effect of walnut oil as medicinal food on abnormal lipid metabolism and its influence on liver metabolites and intestinal flora.

Methods: The rat model of abnormal lipid metabolism was established by feeding high-fat diet and administering a high-fat emulsion via gavage. The rats were randomly assigned to one of the five groups: the normal group (ND), the model group (HFD), and three walnut oil intervention groups differing in dosage [low-dose (OL, 2.

View Article and Find Full Text PDF

Intestine versus liver? Uncovering the hidden major metabolic organs of silybin in rats.

Drug Metab Dispos

January 2025

Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. Electronic address:

Silybin, a milk thistle extract, is a flavonolignan compound with hepatoprotective effect. It is commonly used in dietary supplements, functional foods, and nutraceuticals. However, the metabolism of silybin has not been systematically characterized in organisms to date.

View Article and Find Full Text PDF

An Update on Animal Models of Alcohol-Associated Liver Disease.

Am J Pathol

January 2025

Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA; Department of Internal Medicine, Division of Gastroenterology, Hepatology & Mobility, University of Kansas Medical Center, Kansas City, Kansas 66160, USA. Electronic address:

Alcohol-associated liver disease (ALD) is a significant global health concern and a leading cause of liver disease-related deaths. However, the treatment options are limited due to the lack of animal models that accurately replicate ALD pathogenesis. An ideal ALD animal model should have pathological characteristics similar to those of human ALD, with a clear pathological process and ease of drug intervention.

View Article and Find Full Text PDF

The hypothalamus-pituitary-thyroid axis is disrupted by exposure to a mix of tributyltin and bisphenol S.

Environ Pollut

January 2025

Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; i3S- Instituto de Investigação e Inovação em Saúde, Porto, Portugal; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:

Tributyltin is a biocide and bisphenol S is a plasticizer. The effects of the TBT+BPS mix on thyroid axis function are unknown. This study evaluated the effects of subacute exposure to TBT and BPS, both in mix and alone, in female young Wistar rats.

View Article and Find Full Text PDF

Preventing the progression of liver damage to fibrosis would be beneficial for patients with steatotic liver disease (SLD). Mesenchymal stem cells (MSC) are a promising therapy for SLD and derived extracellular vesicles (EVs) could even improve the treatment's efficacy and safety. However, the mechanisms of MSC-EVs beneficial effects are not well known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!