Molecular mimicry: An explanation for autoimmune diseases and infertility.

Scand J Immunol

Department of Microbiology, Panjab University, Chandigarh, India.

Published: August 2018

Microorganisms execute an enthralling range of adjustments to survive in the host. Among the various strategies employed by microorganisms to surmount the host immune response, the phenomenon of molecular mimicry empowers the microorganisms to manoeuvre host physiology and cellular functions for their own advantage by mimicking the host proteins and initiating autoimmunity. This phenomena, by and large, has been studied in context of autoimmune diseases; however, its implications have also been reported in infertility. Hence, in this article, we provide a review of the various instances of molecular mimicry initiated by bacteria, parasites and viruses in the world of autoimmune diseases and infertility.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sji.12697DOI Listing

Publication Analysis

Top Keywords

molecular mimicry
12
autoimmune diseases
12
diseases infertility
8
mimicry explanation
4
explanation autoimmune
4
infertility microorganisms
4
microorganisms execute
4
execute enthralling
4
enthralling range
4
range adjustments
4

Similar Publications

APS is an autoimmune disorder characterized by thrombosis and pregnancy complications, primarily driven by aPLs such as LA, aCL and anti-β2 glycoprotein I (a-β2GPI). Despite advances in anticoagulation therapies, managing refractory APS cases remains challenging. Emerging therapies, including rituximab, eculizumab and HCQ, show potential in addressing the underlying mechanisms of APS.

View Article and Find Full Text PDF

Antibodies directed against bacterial antigens in sera of Polish patients with primary biliary cholangitis.

Front Cell Infect Microbiol

January 2025

Clinic of Polish Gastroenterology Foundation, Warsaw, Poland.

Background: Primary biliary cholangitis (PBC) is a cholestatic, autoimmune liver disease with the presence of characteristic autoantibodies. The aim of the work was to determine the level of antibodies directed against bacterial antigens: (anti-anti), (anti-), (anti- ) and () in sera of PBC patients. We also performed studies on the impact of the bacterial peptides on the specific antigen-antibody binding.

View Article and Find Full Text PDF

Peptide fibrils as a vaccine: Proof of concept.

J Immunol Methods

January 2025

Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.

Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.

Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.

View Article and Find Full Text PDF

Targeting MXD1 sensitises pancreatic cancer to trametinib.

Gut

January 2025

State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China

Background: The resistance of pancreatic ductal adenocarcinoma (PDAC) to trametinib therapy limits its clinical use. However, the molecular mechanisms underlying trametinib resistance in PDAC remain unclear.

Objective: We aimed to illustrate the mechanisms of resistance to trametinib in PDAC and identify trametinib resistance-associated druggable targets, thus improving the treatment efficacy of trametinib-resistant PDAC.

View Article and Find Full Text PDF

The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!