Calcium store refilling and STIM activation in STIM- and Orai-deficient cell lines.

Pflugers Arch

Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.

Published: October 2018

Mediated through the combined action of STIM proteins and Orai channels, store-operated Ca entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca and Ca signals. We found that unstimulated, SOCE null KO cells still retain 50~70% of ER Ca stores of wildtype (wt) cells. After brief exposure to store-emptying conditions, acute refilling of ER Ca stores was totally blocked in KO cells. However, after 24 h in culture, stores were eventually refilled. Thus, SOCE is critical for immediate refilling of ER Ca but is dispensable for the maintenance of long-term ER Ca homeostasis. Using the Orai null background triple Orai-KO cells, we examined the plasma membrane translocation properties of a series of truncated STIM1 variants. FRET analysis reveals that, even though PM tethering of STIM1 expedites the activation of STIM1 by facilitating its oligomerization, migration, and accumulation in ER-PM junctions, it is not required for the conformational switch, oligomerization, and clustering of STIM1. Even without overt puncta formation at ER-PM junctions, STIM1 and STIM1 could still rescue SOCE when expressed in STIM KO cells. Thus, ER-PM trapping and clustering of STIM molecules only facilitates the process of SOCE activation, but is not essential for the activation of Orai channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153602PMC
http://dx.doi.org/10.1007/s00424-018-2165-5DOI Listing

Publication Analysis

Top Keywords

orai channels
8
stim orai
8
er-pm junctions
8
stim
7
orai
6
cells
6
stim1
6
soce
5
calcium store
4
store refilling
4

Similar Publications

Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.

View Article and Find Full Text PDF

Channels, Transporters, and Receptors at Membrane Contact Sites.

Contact (Thousand Oaks)

December 2024

Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.

Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Unlabelled: Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β (TGF-β ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC).

View Article and Find Full Text PDF

Genetic evidence against involvement of TRPC proteins in SOCE, ROCE, and CRAC channel function.

Proc Natl Acad Sci U S A

December 2024

Institute of Biomedical Research, School of Biomedical Sciences, Catholic University of Argentina, Buenos Aires C1107AFF, Argentina.

Article Synopsis
  • Researchers used genetically engineered mice and cell lines to study how the depletion of endoplasmic reticulum (ER) calcium stores activates specific calcium entry channels (SOCE) that primarily rely on Orai1 molecules.
  • They discovered that Orai1 is the dominant calcium entry pathway compared to Orai2 and Orai3, and this process does not require functional TRPC molecules, as shown by experiments using cells with inactive TRPC genes.
  • The study also found that even though the TRPC genes were disrupted, both store-depletion-activated calcium entry and receptor-operated calcium entry (ROCE) still relied on Orai1, leading to the establishment of a new strain of mice called TRPC heptaKO mice, which are
View Article and Find Full Text PDF

Store-Operated Calcium Channels in the Nervous System.

Annu Rev Physiol

November 2024

Department of Pharmacology, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; email:

Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique inside-out gating process involving interactions with the endoplasmic reticulum Ca2+ sensors, STIM1 and STIM2. Recent evidence indicates that SOCE is broadly found across all areas of the nervous system where its physiology and pathophysiology is only now beginning to be understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!