Mediated through the combined action of STIM proteins and Orai channels, store-operated Ca entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca and Ca signals. We found that unstimulated, SOCE null KO cells still retain 50~70% of ER Ca stores of wildtype (wt) cells. After brief exposure to store-emptying conditions, acute refilling of ER Ca stores was totally blocked in KO cells. However, after 24 h in culture, stores were eventually refilled. Thus, SOCE is critical for immediate refilling of ER Ca but is dispensable for the maintenance of long-term ER Ca homeostasis. Using the Orai null background triple Orai-KO cells, we examined the plasma membrane translocation properties of a series of truncated STIM1 variants. FRET analysis reveals that, even though PM tethering of STIM1 expedites the activation of STIM1 by facilitating its oligomerization, migration, and accumulation in ER-PM junctions, it is not required for the conformational switch, oligomerization, and clustering of STIM1. Even without overt puncta formation at ER-PM junctions, STIM1 and STIM1 could still rescue SOCE when expressed in STIM KO cells. Thus, ER-PM trapping and clustering of STIM molecules only facilitates the process of SOCE activation, but is not essential for the activation of Orai channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153602 | PMC |
http://dx.doi.org/10.1007/s00424-018-2165-5 | DOI Listing |
Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFContact (Thousand Oaks)
December 2024
Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER).
View Article and Find Full Text PDFUnlabelled: Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β (TGF-β ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Institute of Biomedical Research, School of Biomedical Sciences, Catholic University of Argentina, Buenos Aires C1107AFF, Argentina.
Annu Rev Physiol
November 2024
Department of Pharmacology, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; email:
Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique inside-out gating process involving interactions with the endoplasmic reticulum Ca2+ sensors, STIM1 and STIM2. Recent evidence indicates that SOCE is broadly found across all areas of the nervous system where its physiology and pathophysiology is only now beginning to be understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!