The intensive use of insecticides such as chlorpyrifos (CPF) and diazinon (DZN) in the agricultural activities worldwide has produced contamination of soils and/or transport to non-target areas including their distribution to surface and groundwaters. Cyclodextrins (CDs) have been proposed as an alternative in remediation technologies based on the separation of contaminants from soils because they could allow a higher bioavailability for their degradation with a low environmental impact. In this work, the degradation pattern of CPF and DZN and the formation and dissipation of the major degradation products 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMPH) was established in four agricultural volcanic and non-volcanic soils belonging to Andisol, Ultisol, and Mollisol orders. Both pesticides were highly adsorbed in these soils, consequently, with a greater probability of contaminating them. In contrast, the adsorption of their two main metabolites was low or null; therefore, they are potential groundwater contaminants. The degradation processes were studied in the natural and amended soils with β-cyclodextrin (β-CD) and methyl-β-cyclodextrin (Mβ-CD) for CPF and DZN, respectively. A slow degradation of CPF and DZN was obtained for volcanic soils with observable residues until the end of the incubation time (150-180 days). In Mollisols, the higher degradation rate of CPF was favored by the neutral to basic pH, and for DZN it was related to the lower adsorption and higher bioavailability. The amendment of soils with CDs produced slower degradation rates which led to a greater concentration of the compounds at the end of the incubation time. This effect was more pronounced for DZN. The exception was the Andisol, with no significant changes for both compounds regarding the unamended soil. No residues of TCP were observed for this soil in both conditions during the whole incubation time; nevertheless, the accumulation of TCP was significant in the Ultisol and Mollisols, but the concentrations were lower for the amended soils. The accumulation of IMPH was important in Mollisol amended soils; however, their residues were observed in the volcanic soils during the whole incubation period in the natural and amended soils. An important enhancement of the microbial activity occurred in the system β-CD/CPF in Mollisols, without a more effective degradation of the insecticide. The opposite effect was observed in the system Mβ-CD/DZN mainly in the oxidative activity in all soils. The higher degradation of DZN and IMPH in natural Mollisols was related to the higher hydrolytic and oxidative activities. The stability of the inclusion complexes formed could play an important role for explaining the results obtained with the amendments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2559-0 | DOI Listing |
PeerJ
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).
View Article and Find Full Text PDFFront Microbiol
January 2025
DeepBlue Academy of Sciences, Shanghai, China.
Introduction: The salinization of coastal soils is a primary cause of global land degradation. The aim of this study was to evaluate the effect of organic amendment on the soil microbial community within a saline gradient.
Methods: The study was designed with five levels of electrical conductivity (EC): 0.
Ecol Appl
January 2025
Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, California, USA.
Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.
View Article and Find Full Text PDFChemosphere
January 2025
Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas s/n, Badajoz, 06071, Spain.
One challenging task to produce rice that comply with the increasing demanding regulations, is to reduce, simultaneously, grain bioaccumulation of As, Cd, and Pb. A 3-year field experiment was conducted in a Mediterranean environment, to evaluate the effects on As, Cd, and Pb bioaccumulation in rice grain, of the adoption of two levels of alternate wetting and drying (AWD) irrigation conditions: moderate and intensive (reflooding at -20 kPa and -70 kPa soil matric water potential, respectively), relative to the traditional permanent flood irrigation. Plots were prepared with or without a one-time holm oak biochar application (35 Mg ha), in the first year of the study.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!