Interfacial Microstructure Evolution Due to Strain Path Changes in Sliding Contacts.

ACS Appl Mater Interfaces

AC2T research GmbH , Viktor-Kaplan-Straße 2/C , 2700 Wiener Neustadt , Austria.

Published: July 2018

We performed large-scale molecular dynamics (MD) simulations to study the transient softening stage that has been observed experimentally in sliding interfaces subject to strain path changes. The occurrence of this effect can be of crucial importance for the energy efficiency and wear resistance of systems that experience changes in the sliding direction, such as bearings or gears in wind parks, piston rings in combustion engines, or wheel-rail contacts for portal cranes. We therefore modeled the sliding of a rough counterbody against two polycrystalline substrates of face-centered cubic (fcc) copper and body-centered cubic (bcc) iron with initial near-surface grain sizes of 40 nm. The microstructural development of these substrates was monitored and quantified as a function of time, depth, and applied pressure during unidirectional sliding for 7 ns. The results were then compared to the case of sliding in one direction for 5 ns and reversing the sliding direction for an additional 2 ns. We observed the generation of partial dislocations, grain refinement, and rotation as well as twinning (for fcc) in the near-surface region. All microstructures were increasingly affected by these processes when maintaining the sliding direction but recovered to a great extent upon sliding reversal up to applied pressures of 0.4 GPa in the case of fcc Cu and 1.5 GPa for bcc Fe. We discuss the applicability and limits of our polycrystalline MD model for reproducing well-known bulk phenomena such as the Bauschinger effect in interfacial processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b06894DOI Listing

Publication Analysis

Top Keywords

sliding direction
16
sliding
9
strain path
8
path changes
8
changes sliding
8
interfacial microstructure
4
microstructure evolution
4
evolution strain
4
sliding contacts
4
contacts performed
4

Similar Publications

Transforming Pharmacology Education: Insights from the Pharmacology Education Project in the Era of Digital Learning.

Eur J Pharmacol

January 2025

Internal Medicine Office, Medical Education Centre, Western General Hospital, Edinburgh EH4 2XU, UK. Electronic address:

The IUPHAR Education Committee's Pharmacology Education Project (PEP; www.pharmacologyeducation.org) provides an open-access, peer-reviewed platform to support pharmacology education globally.

View Article and Find Full Text PDF

Graph neural networks in histopathology: Emerging trends and future directions.

Med Image Anal

January 2025

Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands; Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Histopathological analysis of whole slide images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fail to capture the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs.

View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

The Effects of Resonance Frequency Breathing on Cardiovascular System and Brain-Cardiopulmonary Interactions.

Appl Psychophysiol Biofeedback

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.

Resonance frequency (RF) is characterized as the specific frequency at which a system, equipped with delayed self-correction or negative feedback mechanisms, exhibits maximal amplitude oscillations in response to an external stimulus of a particular frequency. Emerging evidence suggests that the cardiovascular system has an inherent RF, and that breathing at this frequency can markedly enhance health and cardiovascular function. However, the efficacy of resonance frequency breathing (RFB) and the specific responses of the cardiovascular, respiratory, and central nervous systems during RFB remain unclear.

View Article and Find Full Text PDF

Monitoring the impact of confinement on hyphal penetration and fungal behavior.

PLoS One

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.

Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!