Unmanned aerial vehicles (UAVs) are an inexpensive platform for collecting remote sensing images, but UAV images suffer from a content loss problem caused by noise. In order to solve the noise problem of UAV images, we propose a new methods to denoise UAV images. This paper introduces a novel deep neural network method based on generative adversarial learning to trace the mapping relationship between noisy and clean images. In our approach, perceptual reconstruction loss is used to establish a loss equation that continuously optimizes a min-max game theoretic model to obtain better UAV image denoising results. The generated denoised images by the proposed method enjoy clearer ground objects edges and more detailed textures of ground objects. In addition to the traditional comparison method, denoised UAV images and corresponding original clean UAV images were employed to perform image matching based on local features. At the same time, the classification experiment on the denoised images was also conducted to compare the denoising results of UAV images with others. The proposed method had achieved better results in these comparison experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069080 | PMC |
http://dx.doi.org/10.3390/s18071985 | DOI Listing |
Sensors (Basel)
January 2025
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Minas Gerais (FAMINAS), Muriaé 36888-233, Brazil.
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.
This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Environmental Remote Sensing and Geoinformatics, Trier University, Universitätsring 15, 54296 Trier, Germany.
Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).
View Article and Find Full Text PDFJ Imaging
January 2025
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Crop field monitoring using unmanned aerial vehicles (UAVs) is one of the most important technologies for plant growth control in modern precision agriculture. One of the important and widely used tasks in field monitoring is plant stand counting. The accurate identification of plants in field images provides estimates of plant number per unit area, detects missing seedlings, and predicts crop yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!