Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548309 | PMC |
http://dx.doi.org/10.1016/j.matbio.2018.06.006 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Epidemiological studies indicate that the involvement of the immune system in the pathogenesis of infections associated with chronic obstructive pulmonary disease (COPD), asthma, and interstitial lung disease (ILD) remains unclear. This study aims to assess the potential causal link between infections associated with COPD, asthma, or ILD and immune system function. We conducted a two-sample Mendelian randomization analysis using publicly available genome-wide association study (GWAS) datasets.
View Article and Find Full Text PDFExp Lung Res
January 2025
Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
Mobility is essential for individuals with physical disabilities, and wheelchairs significantly enhance their quality of life. Recent advancements focus on developing sophisticated control systems for effective and efficient interaction. This study evaluates the usability and performance of three wheelchair control modes manual, automatic, and voice controlled using a virtual reality (VR) simulation tool.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
Invisible health monitoring is currently a topic of global interest within the scientific community. Sensorization of everyday objects can provide valuable health information without requiring any changes in people's routines. In this work, a feasibility study of photoplethysmography (PPG) acquisition in the lower limbs for continuous and real-time monitoring of the vital signs, including heart rate (HR) and respiratory rate (RR), is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!