Regulation of the regulator of G protein signaling 2 expression and cellular localization by PKA and PKC pathways in mouse granulosa cells.

Biochem Biophys Res Commun

Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. Electronic address:

Published: September 2018

G protein-coupled receptor (GPCR) activation-mediated PKA and PKC pathways have been recognized to be important in ovarian physiology. Expression of regulator of G-protein signaling 2 (RGS2) has been reported in ovarian granulosa cells. The detailed mechanisms in PKA- and PKC-regulated RGS2 expression and cellular translocation in granulosa cells remain mostly unclear. PKA activator 8-bromo-cAMP and PKC activator phorbol-12, 13-didecanoate appeared to rapidly elevate both protein and mRNA levels and promoter activation of RGS2 gene. Two consensus Sp1 elements within the shortest 78 bp fragment of RGS2 promoter sequence were essential for the full responsiveness to PKA and PKC. PKC activation appeared to increase the RGS2 translocation from nucleus to cytosol. PKA- and PKC-mediated RGS2 transcription in a Sp-1-dependent manner and a PKC-mediated RGS2 intracellular translocation were noted in granulosa cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.06.101DOI Listing

Publication Analysis

Top Keywords

granulosa cells
16
pka pkc
12
expression cellular
8
pkc pathways
8
translocation granulosa
8
pkc-mediated rgs2
8
rgs2
7
pkc
5
regulation regulator
4
regulator protein
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

High concentrations of prolactin (PRL)-induced ovine ovarian granulosa cell (GCs) apoptosis and could aggravate the induced effect. However, the molecular mechanisms that -induced GC apoptosis and repressed steroid hormone secretion remain unclear. In this study, GCs in the P group (GCs with high PRL concentration: 500 ng/mL PRL) and P-10 group (GCs with 500 ng/mL PRL infected by lentiviruses carrying overexpressed sequences of ) were collected for whole-transcriptome analysis.

View Article and Find Full Text PDF

Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Molecular Mechanism of PLIN1 in Goose Hierarchical and Pre-Hierarchical Follicle Granulosa Cells.

Animals (Basel)

January 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.

, a member of the PAT family, is expressed in both adipocytes and steroidogenic cells. In this study, we used cell transfection technology combined with transcriptome sequencing to investigate the regulatory mechanism of in goose follicular GCs. Gene Ontology (GO) analysis revealed that in the four groups (phGC: over_vs_over-NC; hGC: over_vs_over-NC; phGC: si_vs_si-NC; hGC: si_vs_si-NC), most differentially expressed genes (DEGs) were significantly enriched ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!