A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetically Engineered Mucoadhesive Spider Silk. | LitMetric

Genetically Engineered Mucoadhesive Spider Silk.

Biomacromolecules

Royal Instutute of Technology, KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, Stockholm 10691 , Sweden.

Published: August 2018

Mucoadhesion is defined as the adhesion of a material to the mucus gel covering the mucous membranes. The mechanisms controlling mucoadhesion include nonspecific electrostatic interactions and specific interactions between the materials and the mucins, the heavily glycosylated proteins that form the mucus gel. Mucoadhesive materials can be used to develop mucosal wound dressings and noninvasive transmucosal drug delivery systems. Spider silk, which is strong, biocompatible, biodegradable, nontoxic, and lightweight would serve as an excellent base for the development of such materials. Here, we investigated two variants of the partial spider silk protein 4RepCT genetically engineered in order to functionalize them with mucoadhesive properties. The pLys-4RepCT variant was functionalized with six cationically charged lysines, aiming to provide nonspecific adhesion from electrostatic interactions with the anionically charged mucins, while the hGal3-4RepCT variant was genetically fused with the Human Galectin-3 Carbohydrate Recognition Domain which specifically binds the mucin glycans Galβ1-3GlcNAc and Galβ1-4GlcNAc. First, we demonstrated that coatings, fibers, meshes, and foams can be readily made from both silk variants. Measured by the adsorption of both bovine submaxillary mucin and pig gastric mucin, the newly produced silk materials showed enhanced mucin binding properties compared with materials of wild-type (4RepCT) silk. Moreover, we showed that pLys-4RepCT silk coatings bind mucins through electrostatic interactions, while hGal3-4RepCT silk coatings bind mucins through specific glycan-protein interactions. We envision that the two new mucoadhesive silk variants pLys-4RepCT and hGal3-4RepCT, alone or combined with other biofunctional silk proteins, constitute useful new building blocks for a range of silk protein-based materials for mucosal treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.8b00578DOI Listing

Publication Analysis

Top Keywords

spider silk
12
electrostatic interactions
12
silk
11
genetically engineered
8
mucus gel
8
silk variants
8
silk coatings
8
coatings bind
8
bind mucins
8
materials
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!