All modern molecular biology and microbiology is underpinned by not only the tools to handle and manipulate microorganisms but also those to store, bank, and transport them. Glycerol is the current gold-standard cryoprotectant, but it is intrinsically toxic to most microorganisms: only a fraction of cells survive freezing and the presence of glycerol can impact downstream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of microorganisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, and successful cryopreservation shown as low as 1.1 wt % of additive. The mechanism of protection is demonstrated to be linked not only to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram-negative, Gram-positive, and mycobacteria strains. This represents a step-change in how microorganisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588267PMC
http://dx.doi.org/10.1021/acs.biomac.8b00660DOI Listing

Publication Analysis

Top Keywords

ice recrystallization
16
recrystallization inhibiting
8
compared glycerol
8
ice
5
microorganisms
5
inhibiting polymers
4
polymers enable
4
enable glycerol-free
4
glycerol-free cryopreservation
4
cryopreservation microorganisms
4

Similar Publications

Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.

View Article and Find Full Text PDF

Glycosylated peptides isolated from cheese whey have antifreezing activity.

Food Chem

December 2024

Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:

The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.

View Article and Find Full Text PDF

A Close Cognition of Charged Poly(l-methionine) Derivatives for Antifreeze.

Langmuir

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

Ice formation poses a significant challenge across various fields, from industrial processes to biological preservation. Developing antifreeze agents and recognizing the antifreeze mechanism have gained considerable attention. Herein, a series of poly(l-methionine) derivatives, poly(-carboxymethyl-l-methionine sulfonium) (PMetA), poly(-methyl-l-methionine sulfonium chloride) (PMetM), and poly(-carbamidomethyl-l-methionine sulfonium chloride) (PMetAM), with carboxyl, methyl, and acetamide groups, respectively, are synthesized and investigated for antifreeze.

View Article and Find Full Text PDF

This study investigated the effect of various concentrations (0.01%, 0.05%, 0.

View Article and Find Full Text PDF

The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!