The study was designed to generate an ophthalmic thermosensitive in situ gel with improved mechanical and mucoadhesive properties that may prolong the retention time to enhance the bioavalability of pearl hydrolyzate. The gene was comprised of poloxamer 407, poloxamer188 and Carbopol 934, which were optimized by central composite design and response surface methodology. The rheological properties, transcorneal permeability, retention time and in vitro release behaviors of the optimal gel formulation were investigated. The gel was Newtonian liquid at 25 ℃ and performed as a semisolid gel with non-Newtonian liquid property with a gelation time of 13 s at 35 ℃. Compared with a conventional eye drops, the ophthalmic in situ gel exhibited a sevenfold increase in retention with a sustained release behavior, which was observed with suitable permeability coefficient at 5.58 cm·s-1. In conclusion, the new gel of pearl hydrolyzate prolonged the release duration of drug, which may decrease the frequency of administration of pearl hydrolyzate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

situ gel
12
pearl hydrolyzate
12
thermosensitive situ
8
retention time
8
gel
7
[preparation properties
4
properties thermosensitive
4
gel ophthalmic
4
ophthalmic formulation
4
pearl
4

Similar Publications

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

In this study, a novel adsorbent called Ca@SP was developed by immobilizing microalgae protein (Spirulina platensis, SP) in an alginate matrix for enhanced Pb²⁺ removal from aqueous solutions. Synthesized via in situ crosslinking, Ca@SP leverages the synergistic effects of alginate's gel-forming ability and SP's N-rich biomass. Characterization of Ca@SP revealed a green spherical hydrogel with a BET specific surface area of 159.

View Article and Find Full Text PDF

Altrenogest is a key regulatory hormone for intensive and batch management of reserve sows in breeding farms. As a synthetic hormone, altrenogest could make ovaries stay at the initial stage of follicles and inhibit estrus and ovulation in animals. However, the currently used oral altrenogest solution needs to be administered continuously every day for more than two weeks in clinical practice.

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

The study investigates the development and characterization of dual-loaded niosomes incorporated into ion-sensitive in situ gel as a potential drug delivery platform for ophthalmic application. Cannabidiol (CBD) and epigallocatechin-3-gallate (EGCG) simultaneously loaded niosomes were prepared via the thin film hydration (TFH) method followed by pulsatile sonication and were subjected to comprehensive physicochemical evaluation. The optimal composition was included in a gellan gum-based in situ gel, and the antimicrobial activity, in vitro toxicity in a suitable corneal epithelial model (HaCaT cell line), and antioxidant potential of the hybrid system were further assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!