EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.

J Neural Eng

Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States of America.

Published: October 2018

AI Article Synopsis

  • Brain-computer interfaces (BCIs) allow direct communication with computers through neural signals, typically analyzed using electroencephalogram (EEG) data.
  • Researchers introduced EEGNet, a compact convolutional neural network specifically designed for classifying EEG signals across multiple BCI paradigms.
  • EEGNet outperformed existing methods in generalizing across various paradigms while maintaining high accuracy, even with limited training data, and included techniques for visualizing the learned features.

Article Abstract

Objective: Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible.

Approach: In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR).

Main Results: We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features.

Significance: Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/aace8cDOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
bci paradigms
12
eegnet compact
8
compact convolutional
8
neural network
8
network eeg-based
8
brain-computer interfaces
8
control signal
8
eeg signals
8
signals bci
8

Similar Publications

Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany.

Background: With a global ageing population, there is an increasing demand for fast and reliable early diagnosis of individuals. Convolutional neural networks (CNNs) have an immense potential in assisting clinicians in diagnosing dementia. Regional atrophy patterns, which are visible in T1-weighted MRI scans, have been consistently identified by the CNNs with high accuracy.

View Article and Find Full Text PDF

Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Acta Orthop

January 2025

Department of Orthopaedic Surgery, Danderyd Hospital, Stockholm; 2 Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

Background And Purpose:  Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

MIRAL R&D&I Multimedia, San Diego, CA, USA.

Background: A decline in Instrumental Activities of Daily Living (IADLs) indicates cognitive impairment, a marker of early detection of Alzheimer's disease (AD). Obtaining hand information within the assessment of IADLs may be an innovative approach to predicting cognitive decline. Hands play a vital role while performing IADL and can be used in assessing human visuomotor skills.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: There is increasing need for noninvasive biomarkers of Alzheimer's Disease (AD) neuropathologic change for early detection and intervention through risk-factor modification and disease-modifying therapies. One such biomarker is the prediction of chronological age from routine clinical tests such as an electrocardiogram (EKG) to discriminate between observed biological age from chronological age for healthy aging. Deviation of true age from predicted age has been associated with heart failure, hypertension, and coronary heart disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!