Osteoporosis is a major debilitating cause of fractures and decreases the quality of life in elderly patients. Bone homeostasis is maintained by bone forming osteoblasts and bone resorpting osteoclasts. Substantial evidences have shown that targeting osteoclasts using natural products is a promising strategy for the treatment of osteoporosis. In the current study, we investigated the osteoprotective effect of Abietic acid (AA) in in vitro and in vivo models of osteolysis. In vitro experiments demonstrated that, AA suppressed receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and F-actin ring formation in a concentration dependent manner. Mechanistically, AA abrogated RANKL-induced phosphorylation of IKKα/β (ser 176/180), IkBα (ser 32), and inhibited the nuclear translocation of NF-κB. We also found that, AA attenuated the RANKL-induced phosphorylation of MAPKs and decreased the expression of osteoclast specific genes such as TRAP, DC-STAMP, c-Fos, and NFATc1. Consistent with in vitro results, in vivo Lipoploysaccharide (LPS)-induced osteolysis model showed that AA inhibited the LPS-induced serum surge in cytokines TNF-α and IL-6. μ-CT analysis showed that AA prevented the LPS-induced osteolysis. Furthermore, histopathology and TRAP staining results suggested that AA decreased the number of osteoclasts in LPS-injected mice. Taken together, we demonstrated that the osteoprotective action of AA is coupled with the inhibition of NF-κB and MAPK signaling and subsequent inhibition of NFATc1 and c-Fos activities. Hence, AA may be considered as a promising drug candidate for the treatment of osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26575DOI Listing

Publication Analysis

Top Keywords

abietic acid
8
mapk signaling
8
treatment osteoporosis
8
vitro vivo
8
rankl-induced phosphorylation
8
lps-induced osteolysis
8
acid attenuates
4
attenuates rankl
4
rankl induced
4
induced osteoclastogenesis
4

Similar Publications

Cobalt (II, III) oxide (CoO) has recently gained attention as an alternative anode material to commercial graphite in lithium-ion batteries (LIBs) due to its superior safety and large theoretical capacity of about 890 mAh g. However, its practical application is limited by poor electrical conductivity and rapid capacity degradation because of significant volume increases and structural strain during repeated lithiation/delithiation cycles. To address these issues, this work presents a novel approach to synthesizing carbon-composited CoO microspheres (CoO@C), using abietic acid (AA) as a carbon source to increase conductivity and structural stability.

View Article and Find Full Text PDF

Wound Healing Potential of Herbal Hydrogel Formulations of Extracts in Mice.

Gels

November 2024

Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.

Article Synopsis
  • Wound healing is a major focus in healthcare, especially for vulnerable populations; this study explores the healing effects of resin and bark extracts from a plant native to Cyprus in a mouse model.
  • Researchers used male SKH-hr2 mice with induced wounds to test hydrogel formulations containing varying concentrations of these plant extracts and assessed their efficacy through several methods, including clinical observations and advanced imaging techniques.
  • The findings suggest that the 10% resin formulation was the most effective, with chemical analysis revealing compounds like abietic acid that could explain the positive results, highlighting the need for further study on herbal treatments in wound care.
View Article and Find Full Text PDF

The asymmetric syntheses of naturally occurring biologically relevant -abietane diterpenoids, (-)-taiwaniaquinone G (), and H () have been reported via a chiral pool strategy starting from commercially available abietic acid. A ring contraction of the middle ring of the [6,6,6]-carbotricyclic abietane diterpenoid core was carried out under the Wolff rearrangement. Finally, the synthesis of (-)-taiwaniaquinone H () was completed via a one-pot CAN-mediated oxidative decarboxylation.

View Article and Find Full Text PDF

Lipidic biomass as a renewable chemical building block for polymeric materials.

Chem Commun (Camb)

December 2024

Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências, Department of Chemistry, 17033-260, Bauru, SP, Brazil.

Article Synopsis
  • * There's an urgent need for new biodegradable polymers made from renewable sources that are cost-effective, non-toxic, and widely available, like lipids found in vegetable oils and essential oils.
  • * This article aims to review these renewable sources and their related polymeric materials, discussing their properties, applications, and the limitations they face compared to traditional non-renewable polymers.
View Article and Find Full Text PDF
Article Synopsis
  • The rise of glucose sensors and insulin pumps has improved diabetes management, but there's been an increase in contact dermatitis cases linked to these devices due to certain allergens.* -
  • Isobornyl acrylate (IBOA) is a major allergen found in some glucose sensors, leading to its removal from specific products, yet it still appears in many others.* -
  • The potential benefits of these diabetes devices can be overshadowed by allergic reactions, prompting dermatologists to work with endocrinologists and manufacturers to find alternative solutions for affected patients.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!