Selection-based design of in silico dengue epitope ensemble vaccines.

Chem Biol Drug Des

School of Life and Health Sciences, Aston University, Birmingham, UK.

Published: January 2019

Dengue virus affects approximately 130 countries. Twenty-five percentage of infections result in febrile, self-limiting illness; heterotypic infection results in potentially fatal dengue haemorrhagic fever or dengue shock syndrome. Only one vaccine is currently available. Its efficacy is very variable. Thus, to target dengue, we used an innovative immunoinformatics protocol to design a putative epitope ensemble vaccine by selecting an optimal set of highly conserved epitopes with experimentally verified immunogenicity. From 1597 CD4+ and MHC II epitopes, six MHC Class I epitopes (RAVHADMGYW, GPWHLGKLEM, GLYGNGVVTK, NMIIMDEAHF, KTWAYHGSY and WAYHGSYEV) and nine MHC Class II epitopes (LAKAIFKLTYQNKVV, GKIVGLYGNGVVTTS, AAIFMTATPPGSVEA, AAIFMTATPPGTADA, GKTVWFVPSIKAGND, KFWNTTIAVSMANIF, RAIWYMWLGARYLEF, VGTYGLNTFTNMEVQ and WTLMYFHRRDLRLAA) were selected; this candidate vaccine achieved a world population coverage of 92.49%.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13357DOI Listing

Publication Analysis

Top Keywords

epitope ensemble
8
mhc class
8
class epitopes
8
dengue
5
selection-based design
4
design silico
4
silico dengue
4
dengue epitope
4
ensemble vaccines
4
vaccines dengue
4

Similar Publications

The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis C Virus (HCV) is a serious bloodborne virus causing liver disease, and currently, there are no effective vaccines to prevent its spread, highlighting the importance of understanding T cell epitopes (TCEs) in immune response.
  • TCellPredX is a new prediction tool designed to identify TCEs related to HCV by using advanced machine learning techniques and a variety of feature encodings, which together improve the predictive accuracy of TCE identification.
  • The tool has demonstrated high accuracy scores (0.900 and 0.897) in identifying relevant peptides for vaccine development, establishing TCellPredX as a significant resource for future research aimed at creating an effective HCV vaccine.
View Article and Find Full Text PDF

Lassa virus (LASV), an arenavirus endemic to West Africa, poses a significant public health threat due to its high pathogenicity and expanding geographic risk zone. LASV glycoprotein complex (GPC) is the only known target of neutralizing antibodies, but its inherent metastability and conformational flexibility have hindered the development of GPC-based vaccines. We employed a variant of AlphaFold2 (AF2), called subsampled AF2, to generate diverse structures of LASV GPC that capture an array of potential conformational states using MSA subsampling and dropout layers.

View Article and Find Full Text PDF

CDR L3 Loop Rearrangement Switches Multispecific SPE-7 IgE Antibody From Hapten to Protein Binding.

J Mol Recognit

November 2024

Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.

The monoclonal IgE antibody SPE-7 was originally raised against a 2,4-dinitrophenyl (DNP) target. Through its ability to adopt multiple conformations, the antibody is capable of binding to a diverse range of small haptens and large proteins. The present study examines a dataset of experimentally determined crystal structures of the SPE-7 antibody to gain insight into the mechanisms that contribute to its multispecificity.

View Article and Find Full Text PDF

Motivation: Antibody-antigen complex modelling is an important step in computational workflows for therapeutic antibody design. While experimentally determined structures of both antibody and the cognate antigen are often not available, recent advances in machine learning-driven protein modelling have enabled accurate prediction of both antibody and antigen structures. Here, we analyse the ability of protein-protein docking tools to use machine learning generated input structures for information-driven docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!