The negative consequences of fossil fuel burning for the oceans will likely include warming, acidification and deoxygenation, yet predicting future deoxygenation is difficult. Sensitive proxies for oxygen concentrations in ancient deep-ocean bottom-waters are needed to learn from patterns of marine deoxygenation during global warming conditions in the geological past. Understanding of past oxygenation effects related to climate change will better inform us about future patterns of deoxygenation. Here we describe a new, quantitative biological proxy for determining ocean paleo-oxygen concentrations: the surface area of pores (used for gas exchange) in the tests of deep-sea benthic foraminifera collected alive from 22 locations (water depths: 400 to 4100 m) at oxygen levels ranging from ~ 2 to ~ 277 μmol/l. This new proxy is based on species that are widely distributed geographically, bathymetrically and chronologically, and therefore should have broad applications. Our calibration demonstrates a strong, negative logarithmic correlation between bottom-water oxygen concentrations and pore surface area, indicating that pore surface area of fossil epifaunal benthic foraminifera can be used to reconstruct past changes in deep ocean oxygen and redox levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013501 | PMC |
http://dx.doi.org/10.1038/s41598-018-27793-4 | DOI Listing |
Nature
January 2025
SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.
View Article and Find Full Text PDFSci Total Environ
January 2025
Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.
ISME J
January 2025
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China. Electronic address:
Cribrononion gnythosuturatum is a widely distributed benthic foraminifer. However, its adaptability to salinity changes is still poorly understood. To investigate the response of C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901.
Foraminifera are unicellular protists capable of precipitating calcite tests, which fossilize and preserve geochemical signatures of past environmental conditions dating back to the Cambrian period. The biomineralization mechanisms responsible for the mineral structures, which are key to interpreting palaeoceanographic signals, are poorly understood. Here, we present an extensive analysis of the test-bound proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!