The actin-binding protein cortactin promotes the formation and maintenance of actin-rich structures, including lamellipodial protrusions in fibroblasts and neuronal dendritic spines. Cortactin cellular functions have been attributed to its activation of the Arp2/3 complex, which stimulates actin branch nucleation, and to its recruitment of Rho family GTPase regulators. Cortactin also binds actin filaments and significantly slows filament depolymerization, but the mechanism by which it does so and the relationship between actin binding and stabilization are unclear. Here we elucidated the cortactin regions that are necessary and sufficient for actin filament binding and stabilization. Using actin cosedimentation assays, we found that the cortactin repeat region binds actin but that the adjacent linker region is required for binding with the same affinity as full-length cortactin. Using total internal reflection fluorescence microscopy to measure the rates of single filament actin depolymerization, we observed that cortactin-actin interactions are sufficient to stabilize actin filaments. Moreover, conserved charged residues in repeat 4 were necessary for high-affinity actin binding, and substitution of these residues significantly impaired cortactin-mediated actin stabilization. Cortactin bound actin with higher affinity than did its paralog, hematopoietic cell-specific Lyn substrate 1 (HS1), and the effects on actin stability were specific to cortactin. Finally, cortactin stabilized ADP-actin filaments, indicating that the stabilization mechanism does not depend on the actin nucleotide state. Together, these results indicate that cortactin binding to actin is necessary and sufficient to stabilize filaments in a concentration-dependent manner, specific to conserved residues in the cortactin repeats, and independent of the actin nucleotide state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109930 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.004068 | DOI Listing |
J Adv Res
January 2025
the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China. Electronic address:
Introduction: Spinal cord injury (SCI) is a severe central nervous system disorder with limited treatment options. While autophagy plays a protective role in neural repair, its regulatory mechanisms in SCI remain unclear. Actin-like protein 6A (Actl6a) influences cell fate and neural development, yet its specific role in SCI repair is not well understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322.
Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.
View Article and Find Full Text PDFPlant Dis
January 2025
Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China;
Chinese yam ( Turcz.), known for its nutrient-rich underground tubers, is both a food source and a traditional Chinese medicinal plant. It offers significant nutritional and medicinal benefits.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
Tissue fibrosis is a progressive pathological process with excessive deposition of extracellular matrix proteins (ECM). Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM. Here, we found that the Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts.
View Article and Find Full Text PDFBio Protoc
January 2025
ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!