Rationale And Objectives: To evaluate the feasibility of multiparametric magnetic resonance imaging (MRI) of the lungs to detect impaired organ function in a porcine model of ischemic injury within an ex-vivo lung perfusion system (EVLP) prior to transplantation.

Materials And Methods: Twelve pigs were anesthetized, and left lungs were clamped to induce warm ischemia for 3 hours. Right lungs remained perfused as controls. Lungs were removed and installed in an EVLP for 12 hours. Lungs in the EVLP were imaged repeatedly using computed tomography, proton MRI (H-MRI) and fluorine MRI (F-MRI). Dynamic contrast-enhanced derived parenchymal blood volume, oxygen washout times, and F washout times were calculated. P was measured for ischemic and normal lungs, wet/dry ratio was determined, histologic samples were assessed, and cytokines in the lung tissue were analyzed. Statistical analysis was performed using nonparametric testing.

Results: Eleven pigs were included in the final analysis. Ischemic lungs showed significantly higher wet/dry ratios (p = 0.024), as well as IL-8 tissue levels (p = 0.0098). Histologic assessment as well as morphologic scoring of computed tomography and H-MRI did not reveal significant differences between ischemic and control lungs. F washout (p = 0.966) and parenchymal blood flow (p = 0.32) were not significantly different. Oxygen washout was significantly prolonged in ischemic lungs compared to normal control lungs at the beginning (p = 0.018) and further prolonged at the end of the EVLP run (p = 0.005).

Conclusion: Multiparametric pulmonary MRI is feasible in lung allografts within an EVLP system. Oxygen-enhanced imaging seems to be a promising marker for ischemic injury, enabling detection of affected lung segments prior to transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2018.05.006DOI Listing

Publication Analysis

Top Keywords

ischemic injury
12
lungs
10
magnetic resonance
8
resonance imaging
8
ex-vivo lung
8
lung perfusion
8
perfusion system
8
prior transplantation
8
hours lungs
8
computed tomography
8

Similar Publications

Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.

View Article and Find Full Text PDF

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Unlabelled: Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution.

View Article and Find Full Text PDF

Ischemia-reperfusion injury is a serious clinical pathology involving multiple organs such as the heart and brain. The injury results from oxidative stress, inflammatory response and cell death triggered by restoring tissue blood flow after ischemia, leading to severe cell and tissue damage. In recent years, the volume-regulated anion channel (VRAC) has gained attention as an important membrane protein complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!