Biodegradation of gaseous emissions of 2-chlorotoluene by strains of Rhodococcus sp. in polyurethane foam packed biotrickling filters.

Sci Total Environ

Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, Stuttgart 70569, Germany.

Published: October 2018

About 60,000-70,000 tons of 2-chlorotoluene, which shows high toxicity in aquatic ecosystems, are produced worldwide and used in a tremendous field of applications. However, clear proofs of biodegradation were only presented for Comamonas testosteroni KT5 and Rhodococcus sp. OCT10. Hence, this study aims on the isolation of additional strains and their characterization in pilot-scale biotrickling filters. Three strains named OCT2, OCT9, and OCT14 of the genus Rhodococcus were isolated, able to mineralize gaseous 2-chlorotoluene like the previously isolated strain Rhodococcus sp. OCT10. The performance levels of these strains were tested in four biotrickling filters each containing 18.8 L of polyurethane foam package, showing elimination capacities of carbon (C) of 30.9 (OCT2), 30.1 (OCT9), 32.2 (OCT10), and 3.9 g C·m·h (OCT14) at an average crude gas level of 397.6 mg C·m and an empty bed residence time (EBRT) of 22.6 s. Since OCT10 showed the highest performance levels, this strain was characterized in a second biotrickling filter configuration at long-term conditions of 985 days, varying crude gas levels, EBRT and nutrient supply. Chloride balancing showed a recovery of 94.4% of 2-chlorotoluene eliminated out of the gas phase, pointing out mineralization of 2-chlorotoluene. German emission limit values were met at crude gas levels up to 750 mg C·m at EBRTs of 120 s or higher. The maximum elimination capacity was 51.2 g C·m·h at a specific freight of 51.9 g C·m·h and an EBRT of 254 s. Performance levels were strongly boosted by addition of ammonia as nutrient and stabilized at efficiency levels higher than 90% at a feed rate of 4 g ammonium sulfate per week and 100 L of package volume. Repetitive monitoring of the established 2-chlorotoluene degrading community by BOX-PCR fingerprinting revealed a high long-term stability of OCT10, underlining its suitability in this kind of application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.05.278DOI Listing

Publication Analysis

Top Keywords

biotrickling filters
12
performance levels
12
crude gas
12
polyurethane foam
8
rhodococcus oct10
8
gas levels
8
2-chlorotoluene
6
levels
6
oct10
5
biodegradation gaseous
4

Similar Publications

Pilot-scale biogas desulfurization through anoxic biofiltration.

J Hazard Mater

December 2024

Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.

View Article and Find Full Text PDF

Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives.

Bioresour Technol

December 2024

School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou 310023, China; College of Environment, Zhejiang University of Technology, HangZhou 310014, China. Electronic address:

Biotrickling filter (BTF) technology is inefficient in the treatment of Cl-containing volatile organic compounds (VOCs) such as chlorobenzene (CB). This study adopted non-thermal plasma (NTP) as a pretreatment and conducted in-depth analyses, especially in microorganisms, to investigate strengthening mechanism of a NTP to a BTF in the process. The introduction of NTP enhance efficiency of CB removal from 65 % to 90 %, and CO generation from 60 % to 85 %.

View Article and Find Full Text PDF

Removing hydrogen sulfide (HS) toxic and corrosive gas from the natural gas processing and utilization industry is a challenging problem for managers of these industries. This problem involves different economic, environmental, and health issues. Various technologies have been employed to remove the HS gas from these industries, and choosing appropriate HS removal technologies is a complex multi-criteria decision-making (MCDM) problem.

View Article and Find Full Text PDF

Immobilized fillers have been increasingly utilized in biotrickling filters (BTFs) due to their positive impact on shock load resistance and recovery performance. However, due to the inherent characteristics of its immobilized carrier, the immobilized filler is prone to swelling during the long-term operation of the system, resulting in increased pressure drop. Polyurethane (PU) sponge was used as the cross-linked skeleton of immobilized filler and compared with direct emulsified cross-linked immobilized filler for treating ethylbenzene gas.

View Article and Find Full Text PDF

Assessing the impact of packaging materials on anoxic biotrickling filtration of siloxanes in biogas: Effectiveness of activated carbon in removal performance.

J Environ Manage

November 2024

Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain. Electronic address:

Article Synopsis
  • Siloxanes (VMS) are harmful organosilicon compounds that affect the environment and human health, and their presence in biogas complicates its economic use.
  • This study tests three types of packing materials for their effectiveness in removing VMS during anoxic biofiltration, finding that a combination of plastic rings and activated carbon (BTF-3) achieves the highest removal rates, especially for specific VMS types.
  • Despite not seeing performance improvements with changes in liquid velocity or additional nanoparticles, the study reveals promising bacterial communities for VMS degradation and emphasizes activated carbon’s potential in enhancing treatment methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!