This study compared the impact of controlled tile drainage (CD) and freely draining (FD) systems on the prevalence and quantitative real-time PCR-based enumeration of four major pathogens including Arcobacter butzleri, Campylobacter jejuni, Campylobacter coli, and Helicobacter pylori in tile- and groundwater following a fall liquid swine manure (LSM) application on clay loam field plots. Although the prevalence of all target pathogens were detected in CD and FD systems, the loads of A. butzleri, C. jejuni, and C. coli were significantly lower in CD tile-water (p<0.05), in relation to FD tile-water. However, concentrations of A. butzleri were significantly greater in CD than FD tile-water (p<0.05). In shallow groundwater (1.2m depth), concentrations of A. butzleri, C. coli, and H. pylori showed no significant difference between CD and FD plots, while C. jejuni concentrations were significantly higher in FD plots (p<0.05). No impact of CD on the H. pylori was observed since quantitative detection in tile- and groundwater was scarce. Although speculative, H. pylori occurrence may have been related to the application of municipal biosolids four years prior to the LSM experiment. Overall, CD can be used to help minimize off-field export of pathogens into surface waters following manure applications to land, thereby reducing waterborne pathogen exposure risks to humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.10.200 | DOI Listing |
J Environ Qual
January 2025
USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, USA.
The Eastern Corn Belt (ECB) node of the Long-Term Agroecosystem Research (LTAR) network is representative of row crop agricultural production systems in the poorly drained, humid regions of the US Midwest and a significant focus for addressing water quantity and quality concerns affecting Lake Erie and the Gulf of Mexico. The objectives of this paper were to (1) present relevant background information and collection methodology, (2) provide summary analyses of measured data, and (3) provide details for accessing the dataset and discuss potential database applications. The ECB-water quality (ECB-WQ) database is comprised of hydrology and water quality data from three privately owned farms in Northwest Ohio and Northeast Indiana and is available for download through the United States Department of Agriculture Ag Data Commons.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States.
This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed.
View Article and Find Full Text PDFJ Environ Qual
December 2024
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa, USA.
Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.
View Article and Find Full Text PDFJ Environ Qual
January 2025
USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, USA.
Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic ecosystem degradation. The RZWQM2-P model was developed to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!