Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil.

Sci Total Environ

Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany.

Published: May 2018

Long-term nitrogen (N) fertilization affects soil aggregation and localizations of soil organic carbon (SOC), N and microbial parameters within aggregates. The mechanisms of these N effects are poorly understood. We studied these processes in a loamy soil from a 23-year repeated N addition field experiment under a rice-barley rotation. Nitrogen fertilization increased plant productivity and the portion of large macroaggregates (>2mm). However, SOC contents in macro- and micro-aggregates remained constant despite an N-induced increase of 27% in root C input into soil. Therefore, N fertilization accelerated SOC turnover. Nitrogen addition increased total N (TN) content in bulk soil and two macroaggregates (>2, and 1-2mm), but not in microaggregates (<0.25mm). Also, N fertilization increased the phospholipid fatty acids (PLFAs) contents of fungi in the large macroaggregates, but not in the microaggregates. In contrast, the effect of N addition on contents of bacterial and total microbial PLFAs was not apparent. Nitrogen fertilization increased N-acetyl-β-D-glucosaminidase (NAG) activities in the two larger macroaggregate size classes (>2, and 1-2mm), but not in the aggregates (<1mm). In both control and N fertilization, the large macroaggregates localized more TN, microbial PLFAs, and NAG activities than the microaggregates. In conclusion, long-term N fertilization not only directly promotes soil N resource but also indirectly improves soil structure by forming large macroaggregates, accelerates SOC turnover, and shiftes localization of microorganisms to the macroaggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.12.113DOI Listing

Publication Analysis

Top Keywords

nitrogen fertilization
12
soil
6
nitrogen
5
long-term effects
4
effects nitrogen
4
fertilization
4
fertilization aggregation
4
aggregation localization
4
localization carbon
4
carbon nitrogen
4

Similar Publications

L. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.

View Article and Find Full Text PDF

The Eastern Corn Belt (ECB) node of the Long-Term Agroecosystem Research (LTAR) network is representative of row crop agricultural production systems in the poorly drained, humid regions of the US Midwest and a significant focus for addressing water quantity and quality concerns affecting Lake Erie and the Gulf of Mexico. The objectives of this paper were to (1) present relevant background information and collection methodology, (2) provide summary analyses of measured data, and (3) provide details for accessing the dataset and discuss potential database applications. The ECB-water quality (ECB-WQ) database is comprised of hydrology and water quality data from three privately owned farms in Northwest Ohio and Northeast Indiana and is available for download through the United States Department of Agriculture Ag Data Commons.

View Article and Find Full Text PDF

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how adding nitrogen fertilizers affects the remobilization of cadmium in rice fields, highlighting increased cadmium levels in rice due to ammonia nitrogen (NH-N) compared to nitrogen (NO-N).
  • Organic acids secreted by rice roots, particularly under NH-N treatment, were found to play a significant role in increasing soluble cadmium content and impacting microbial community functions.
  • The research suggests a complex interaction between nutrient application, cadmium levels, and microbial dynamics that could elevate cadmium exposure through rice consumption.
View Article and Find Full Text PDF

Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants.

J Trace Elem Med Biol

January 2025

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.

Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!